[1] Bácsó S, Cheng X, Shen Z. Curvature properties of (α, β)-metrics. Advanced Studies in Pure Mathematics, Math Soc of Japan, 2007, 48:73-110 [2] Bao D, Robles C. On Randers metrics of constant curvature. Rep on Math Phys, 2003, 51:9-42 [3] Bao D, Robles C, Shen Z. Zermelo navigation on Riemann manifolds. J Diff Geom, 2004, 66:391-449 [4] Cheng X, Wang H, Wang M. (α, β)-metrics with relatively isotropic mean Landsberg curvature. Publ Math Debrecen, 2008, 72(3/4):475-485 [5] Chern S S, Shen Z. Rieman-Finsler Geometry. Nankai Tracts in Mathematics. Vol 6. Singapore:World Scientific, 2005 [6] Li B, Shen Z. On a class of weak Landsberg metrics. Science in China Series A, 2007, 50(1):75-85 [7] Matsumoto M. Randers spaces of constant curvature. Rep on Math Phys, 1989, 28:249-261 [8] Yoshikawa R, Sabau S V. Kropina metrics and Zermelo navigation on Riemannian manifolds. Geom Dedicata, 2013, 165:DOI 10.1007/s10711-013-9892-8 [9] Shen Z. Volume comparison and its applications in Riemann-Finsler geometry. Advances in Mathematics, 1997, 128(2):306-328 [10] Shen Z. Differential Geometry of Spray and Finsler Spaces. Dordrecht:Kluwer Academic Publishers, 2001 [11] Shen Z, Yildirim G C. On a class of projectively flat metrics with constant flag curvature. Canad J Math, 2008, 60(2):443-456 [12] Yasuda H, Shimada H. On Randers spaces of scalar curvature. Rep on Math Phys, 1997, 11:347-360 [13] Zhou L. A local classification of a class of (α, β)-metrics with constant flag curvature. Diff Geom Appl, 2010, 28:170-193 |