[1] Brandolese L.Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces. Int Math Res Not, 2012, 22: 5161-5181 [2] Bressan A, Constantin A.Global conservative solutions of the Camassa-Holm equation. Arch Ration Mech Anal, 2007, 183: 215-239 [3] Bressan A, Constantin A.Global dissipative solutions of the Camassa-Holm equation. Anal Appl, 2007, 5: 1-27 [4] Camassa R, Holm D.An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71: 1661-1664 [5] Constantin A, Escher J.Well-posedness, global existence and blow-up phenomenon for a periodic quasilinear hyperbolic equation. Comm Pure Appl Math, 1998, 51: 475-504 [6] Constantin A, Escher J.Wave breaking for nonlinear nonlocal shallow water equations. Acta Math, 1998, 181: 229-243 [7] Constantin A, Gerdjikov V, Ivanov R.Inverse scattering transform for the Camassa-Holm equation. Inverse Problems, 2006, 22: 2197-2207 [8] Constantin A, Strauss W.Stability of peakons. Comm Pure Appl Math, 2000, 53: 603-610 [9] Gröchenig K.Weight functions in time-frequency analysis//Rodino L, Schulze B W, Wong M W. Pseudo- Differential Operators: Partial Differential Equations and Time-Frequency Analysis. Providence, RI: American Mathematical Society, 2007: 343-366 [10] Himonas A, Holliman C.The Cauchy problem for the Novikov equation. Nonlinearity, 2012, 25: 449-479 [11] Himonas A, Holmes J.Hölder continuity of the solution map for the Novikov equation. J Math Phys, 2013, 54: 061501 [12] Himonas A, Misiolek G, Ponce G, Zhou Y.Persistence properties and unique continuation of solutions of the Camassa-Holm equation. Comm Math Phys, 2007, 271: 511-522 [13] Jiang Z, Ni L.Blow-up phenomenon for the integrable Novikov equation. J Math Anal Appl, 2012, 385: 551-558 [14] Jiang Z, Ni L, Zhou Y.Wave breaking of the Camassa-Holm equation. J Nonlinear Sci, 2012, 22: 235-245 [15] Jiang Z, Zhou Y, Zhu M.Large time behavior for the support of momentum density of the Camassa-Holm equation. J Math Phys, 2013, 54: 081503 [16] Kato T.Quasi-linear equations of evolution with application to partial differential equations//Everitt W N. Spectral Theory and Differential Equations. Berlin: Springer, 1975: 25-70 [17] Lai S.Global weak solutions to the Novikov equation. J Funct Anal, 2013, 265: 520-544 [18] Lenells J.Conservation laws of the Camassa-Holm equation. J Phys A, 2005, 38: 869-880 [19] Li Y, Olver P.Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation. J Differential Equations, 2000, 162: 27-63 [20] McKean H. Breakdown of a shallow water equation. Asian J Math, 1998, 2: 767-774 [21] Mi Y, Mu C.On the Cauchy problem for the modified Novikov equation with peakon solutions. J Differential Equations, 2013, 254: 961-982 [22] Ni L, Zhou Y.A new asymptotic behavior of solutions to the Camassa-Holm equation. Proc Amer Math Soc, 2012, 140: 607-614 [23] Ni L, Zhou Y.Well-posedness and persistence properties for the Novikov equation. J Differential Equations, 2011, 250: 3002-3021 [24] Novikov V.Generalisations of the Camassa-Home equation. J Phys A, 2009, 42: 342002 [25] Reyes E.Geometric integrability of the Camassa-Holm equation. Lett Math Phys, 2002, 59: 117-131 [26] Wu X L, Yin Z Y.Well-posedness and global existence for the Novikov equation. Ann Sc Norm Super Pisa Cl Sci, 2012, 11(3): 707-727 [27] Yan W, Li Y, Zhang Y.The Cauchy problem for the integrable Novikov equation. J Differential Equations, 2012, 253: 298-318 [28] Zhou S, Mu C, Wang L.Well-posedness, blow-up phenomena and global existence for the generalized b-equation with higher-order nonlinearities and weak dissipation. Discrete Contin Dyn Syst, 2014, 34: 843-867 [29] Zhou S, Mu C.The properties of solutions for a generalized b-family equation with peakons. J Nonlinear Sci, 2013, 23: 863-889 [30] Zhou S, Yang L, Mu C.Global dissipative solutions of the Novikov equation. Commun Math Sci, 2018, 16: 1615-1633 |