[1] Alvarez F, Attouch H.An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal, 2001, 9: 3-11 [2] Anh P K, Thong D V, Vinh N T.Improved inertial extragradient methods for solving pseudo-monotone variational inequalities. Optimization, 2020, 71(3): 505-528 [3] Antipin A S.On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika i Mat Metody, 1976, 12: 1164-1173 [4] Avriel M, Diewert W E, Schaible S, Zang I. Generalized Concavity. Society for Industrial and Applied Mathematics, 2010 [5] Baiocchi C, Capelo A.Variational and Quasivariational Inequalities, Applications to Free Boundary Prob- lems. New York: Wiley, 1984 [6] Cai X, Gu G, He B.On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput Optim Appl, 2014, 57: 339-363 [7] Cai G, Shehu Y, Iyiola O S.Inertial Tseng’s extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. J Ind Manag Optim, 2022, 18(4): 2873-2902 [8] Cegielski A.Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics, Vol 2057. Berlin: Springer, 2012 [9] Censor Y, Gibali A, Reich S.The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl, 2011, 148: 318-335 [10] Censor Y, Gibali A, Reich S.Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim Meth Softw, 2011, 26: 827-845 [11] Censor Y, Gibali A, Reich S.Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization, 2011, 61: 1119-1132 [12] Cottle R W, Yao J C.Pseudo-monotone complementarity problems in Hilbert space. J Optim Theory Appl, 1992, 75: 281-295 [13] Denisov S V, Semenov V V, Chabak L M.Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern Syst Anal, 2015, 51: 757-765 [14] Dong L Q, Cho J Y, Zhong L L, Rassias M Th.Inertial projection and contraction algorithms for variational inequalities. J Glob Optim, 2018, 70: 687-704 [15] Dong Q L, Gibali A, Jiang D.A modified subgradient extragradient method for solving the variational inequality problem. Numer Algorithms, 2018, 79: 927-940 [16] Gibali A, Reich S, Zalas R.Iterative methods for solving variational inequalities in Euclidean space. J Fixed Point Theory Appl, 2015, 17: 775-811 [17] Gibali A, Reich S, Zalas R.Outer approximation methods for solving variational inequalities in Hilbert space. Optimization, 2017, 66: 417-437 [18] Gibali A, Iyiola O S, Akinyemi L, Shehu Y.Projected-reflected subgradient extragradient method and its real-world applications. Symmetry, 2021, 13(3): 489 [19] Facchinei F, Pang J S.Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols I and II. New York: Springer, 2003 [20] Fichera G.Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad Naz Lincei, VIII Ser, Rend Cl Sci Fis Mat Nat, 1963, 34: 138-142 [21] Goebel K, Reich S. Uniform Convexity, Hyperbolic Geometry,Nonexpansive Mappings. New York: Marcel Dekker, 1984 [22] Hadjisavvas N, Komlosi S, Schaible S, eds. Handbook on Generalized Convexity and Generalized Mono- tonicity, Nonconvex optimization and its Applications, Vol 76. New York: Springer, 2005 [23] He B S.A class of projection and contraction methods for monotone variational inequalities. Appl Math Optim, 1997, 35: 69-76 [24] Karamardian S, Schaible S.Seven kinds of monotone maps. J Optim Theory Appl, 1990, 66: 37-46 [25] Kim D S, Vuong P T, Khanh P D.Qualitative properties of strongly pseudomonotone variational inequal- ities. Optim Lett, 2016, 10: 1669-1679 [26] Kinderlehrer D, Stampacchia G.An Introduction to Variational Inequalities and Their Applications. New York: Academic Press, 1980 [27] Konnov I V.Combined Relaxation Methods for Variational Inequalities. Berlin: Springer-Verlag, 2001 [28] Korpelevich G M.The extragradient method for finding saddle points and other problems. Ekonomika i Mat Metody, 1976, 12: 747-756 [29] Liu H, Yang J.Weak convergence of iterative methods for solving quasimonotone variational inequalities. Comput Optim Appl, 2020, 77(2): 491-508 [30] Shehu Y, Iyiola O S.Projection methods with alternating inertial steps for variational inequalities: weak and linear convergence. Appl Numer Math, 2020, 157: 315-337 [31] Shehu Y, Iyiola O S, Reich S.A modified inertial subgradient extragradient method for solving variational inequalities. Optim Eng, 2021, 23(1): 421-449 [32] Shehu Y, Iyiola O S, Yao J C.New projection methods with inertial steps for variational inequalities. Optimization, 2021, DOI:10.1080/02331934.2021.1964079 [33] Opial Z.Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull Amer Math Soc, 1967, 73: 591-597 [34] Ortega J M, Rheinboldt W C.Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press, 1970 [35] Reich S, Thong D V, Cholamjiak P, et al.Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space. Numer Algor, 2021, 88(2): 813-835 [36] Shehu Y, Liu L, Mu X, Dong Q L.Analysis of versions of relaxed inertial projection and contraction method. Applied Numerical Mathematics, 2021, 165: 1-21 [37] Stampacchia G.Formes bilineaires coercitives sur les ensembles convexes. C R Acad Sci, 1964, 258: 4413-4416 [38] Sun D F.A class of iterative methods for solving nonlinear projection equations. J Optim Theory Appl, 1996, 91: 123-140 [39] Thong D V, Hieu D V.Modified subgradient extragradient method for variational inequality problems. Numer Algorithms, 2018, 79: 597-610 [40] Thong D V, Vuong P T.Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities. Optimization, 2019, 68: 2207-2226 [41] Thong D V, Vuong P T.Improved subgradient extragradient methods for solving pseudomonotone varia- tional inequalities in Hilbert spaces. Applied Numerical Mathematics, 2021, 163: 221-238 [42] Vuong P T.On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J Optim Theory Appl, 2018, 176: 399-409 [43] Vuong P T, Shehu Y.Convergence of an extragradient-type method for variational inequality with appli- cations to optimal control problems. Numer Algorithms, 2019, 81: 269-291 |