[1] Simons J.Minimal varieties in Riemannian manifolds. Ann of Math, 1968, 88: 62-105 [2] Lawson H.Local rigidity theorems for minimal hypersurfaces. Ann of Math (Second Series), 1969, 89(1): 187-197 [3] Chern S S, do Carmo M, Kobayashi S. Minimal submanifolds of a sphere with second fundamental form of constant length//Functional Analysis and Related Fields. Berlin, Heidelberg: Springer, 1970 [4] Li A M, Li J M.An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch Math, 1992, 58(6): 582-594 [5] Chang S P.On minimal hypersurfaces with constant scalar curvatures in S4. J Differ Geom, 1993, 37: 523-534 [6] Ding Q, Xin Y L.On Chern’s problem for rigidity of minimal hypersurfaces in the spheres. Adv Math, 2011, 227: 131-145 [7] Peng C K, Terng C L.Minimal hypersurfaces of sphere with constant scalar curvature//Seminar OnMinimal Submanifolds. Princeton: Princeton Univ Press, 1983 [8] Peng C K, Terng C L.The scalar curvature of minimal hypersurfaces in spheres. Math Ann, 1983, 266: 105-113 [9] Suh Y J, Yang H Y.The scalar curvature of minimal hypersurfaces in a unit sphere. Comm Contemp Math, 2007, 9: 183-200 [10] Wei S M, Xu HW.Scalar curvature of minimal hypersurfaces in a sphere. Math Res Lett, 2007, 14: 423-432 [11] Xu H W.On closed minimal submanifolds in pinched Riemannian manifolds. Trans Amer Math Soc, 1995, 347: 1743-1751 [12] Yang H C, Cheng Q M.An estimate of the pinching constant of minimal hypersurfaces with constant scalar curvature in the unit sphere. Manuscripta Math, 1994, 84: 89-100 [13] Yang H C, Cheng Q M.Chern’s conjecture on minimal hypersurfaces. Math Z, 1998, 227: 377-390 [14] Zhang Q.The pinching constant of minimal hypersurfaces in the unit spheres. Proc Amer Math Soc, 2010, 138: 1833-1841 [37] Lei L, Xu H W, Xu Z Y.On Chern’s conjecture for minimal hypersurface in spheres. arXiv:1712.01175 [38] Xu H W, Xu Z Y.On Chern’s conjecture for minimal hypersurface and rigidity of self-shrinkers. J Funct Anal, 2017, 273: 3406-3425 [17] Okumura S.Hypersurfaces and a pinching problem on the second fundamental tensor. Amer J Math, 1974, 96(1): 207-213 [18] Yau S T.Submanifolds with constant mean curvature I, II. Amer J Math, 1974, 96: 346-366; 1975, 97: 76-100 [19] Xu H W.A rigidity theorem for submanifolds with parallel mean curvature in a sphere. Arch Math, 1993, 61(5): 489-496 [20] Xu H W. Pinching Theorems, Global Pinching Theorems,Eigenvalues for Riemannian Submanifolds[D]. Shanghai: Fudan University, 1990 [21] Xu H W.A gap of scalar curvature for higher dimensional hypersurfaces with constant mean curvature. Appl Math J Chinese Univ Ser A, 1993, 8: 410-419 [22] Xu H W, Tian L.A new pinching theorem for closed hypersurfaces with constant mean curvature in Sn+1. Asian J Math, 2011, 15: 611-630 [23] Xu H W, Xu Z Y.The second pinching theorem for hypersurfaces with constant mean curvature in a sphere. Math Ann, 2013, 356: 869-883 [24] Xu H W, Xu Z Y.A new characterization of the Clifford torus via scalar curvature pinching. J Funct Anal, 2014, 267: 3931-3962 [25] Xu H W, Zhao E T.A characterization of Clifford hypersurface. preprint, 2008 [26] Shen C L.A global pinching theorem of minimal hypersurfaces in the sphere. Proc Amer Math Soc, 1989, 105(1): 192-198 [27] Lin J M, Xia C Y.Global pinching theorems for even dimensional minimal submanifolds in the unit spheres. Math Z, 1989, 201(3): 381-389 [28] Xu H W.Ln/2-pinching theorems for submanifolds with parallel mean curvature in a sphere. J Math Soc Japan, 2006, 46(3): 503-515 [29] Ni L.Gap theorems for minimal submanifolds in Rn+1. Comm Anal Geom, 2001, 9(3): 641-656 [30] Xu H W, Gu J R.A general gap theorem for submanifolds with parallel mean curvature in Rn+p. Comm Anal Geom, 2007, 15(1): 175-193 [31] Gallot S. Isoperimetric inequalities based on integral norms of Ricci curvature. Asterisque, 1988, 157/158: 191-216 [32] Petersen P, Wei G.Relative volume comparison with integral curvature bounds. Geom Funct Anal, 1997, 7(6): 1031-1045 [33] Xu H W, Gu J R.Geometric, topological and differentiable rigidity of submanifolds in space forms. Geom Funct Anal, 2013, 23: 1684-1703 [34] Chen H, Wei G F.Rigidity of minimal submanifolds in space forms. J Geom Anal, 2021, 31: 4923-4933 [35] Gu J R, Xu H W.On Yau rigidity theorem for minimal submanifolds in spheres. Math Res Lett, 2012, 19: 511-523 [36] Zhu Y Y.A Global Rigidity Theorem for Submanifolds with Parallel Mean Curvature in Space Forms[D]. Hongzhou: Zhejiang University, 2019 [37] Deng Q T.Complete hypersurfaces with constant mean curvature and finite index in hyperbolic spaces. Acta Math Sci, 2011, 31B(1): 353-360 [38] Shiohama K, Xu H W.A general rigidity theorem for complete submanifolds. Nagoya Math J, 1998, 150: 105-134 [39] Xie N Q, Xu H W.Geometric inequalities for certain submanifolds in a pinched Riemannian manifold. Acta Math Sci, 2007, 27B(3): 611-618 [40] Yang D Y, Xu H W, Fu H P.New spectral characterizations of extremal hypersurfaces. Acta Math Sci, 2013, 33B(5): 1269-1274 |