[1] Bonilla L, Carrillo J A, Soler J.Asymptotic behavior of an initial-boundary value problem for the Vlasov- Poisson-Fokker-Planck system. SIAM J Appl Math, 1997, 57(5): 1343-1372 [2] Bouchut F.Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions. J Funct Anal, 1993, 111(1): 239-258 [3] Bouchut F.Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system. J Differ Equ, 1995, 122(2): 225-238 [4] Bouchut F, Dolbeault J.On long asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov- Poisson-Fokker-Planck system with coulombic and newtonian potentials. Differ Integral Equ, 1995, 8: 487-514 [5] Carrillo J A.Global weak solutions for the initial-boundary value problems to the Vlasov-Poisson-Fokker- Planck system. Math Methods Appl Sci, 1998, 21: 907-938 [6] Carrillo J A, Soler J.On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in Lp spaces. Math Methods Appl Sci, 1995, 18(10): 825-839 [7] Carrillo J A, Soler J, Vazquez J-L.Asymptotic behaviour and self-similarity for the three dimensional Vlasov-Poisson-Fokker-Planck system. J Funct Anal, 1996, 141: 99-132 [8] El Ghani N, Masmoudi N.Diffusion limit of the Vlasov-Poisson-Fokker-Planck system. Commun Math Sci, 2010, 8(2): 463-479 [9] Goudon T.Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: analysis of the two- dimensional case. Math Models Methods Appl Sci, 2005, 15(5): 737-752 [10] Goudon T, Nieto J, Poupaud F, Soler J.Multidimensional high-field limit of the electro-static Vlasov- Poisson-Fokker-Planck system. J Differ Equ, 2005, 213(2): 418-442 [11] Hwang H J, Jang J.On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete Contin Dyn Syst Ser B, 2013, 18(3): 681-691 [12] Kolmogorov A.Zufallige Bewgungen (zur Theorie der Brownschen Bewegung). Ann of Math, 1934, 35: 116-117 [13] Li H L, Yang T, Sun J W, Zhong M.Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker- Planck) equations (in Chinese). Sci Sin Math, 2016, 46: 981-1004 [14] Li H L, Yang T, Zhong M.Green’s function and pointwise space-time behaviors of the Vlasov-Poisson- Boltzmann system. Arch Rational Mech Anal, 2020, 235: 1011-1057 [15] Lin Y C, Wang H, Wu K C.Explicit structure of the Fokker-Planck equation with potential. Quart Appl Math, 2019, 77: 727-766 [16] Lin Y C, Wang H, Wu K C.Quantitative pointwise estimate of the solution of the linearized Boltzmann equation. J Stat Phys, 2018, 171: 927-964 [17] Liu T P, Yu S H.The Green’s function and large-time behavior of solutions for the one-dimensional Boltzmann equation. Comm Pure Appl Math, 2004, 57: 1543-1608 [18] Liu T P, Yu S H.The Green’s function of Boltzmann equation, 3D waves. Bull Inst Math Acad Sin (NS), 2006, 1(1): 1-78 [19] Liu T P, Yu S H.Solving Boltzmann equation, Part I: Green’s function. Bull Inst Math Acad Sin (NS), 2011, 6: 151-243 [20] Luo L, Yu H J.Spectrum analysis of the linear Fokker-Planck equation. Anal Appl, 2017, 15(3): 313-331 [21] Markowich P A, Ringhofer C A, Schmeiser C. Semiconductor Equations.New York: Springer-Verlag, Wien, 1990 [22] Nieto J, Poupaud F, Soler J.High-field limit for the Vlasov-Poisson-Fokker-Planck system. Arch Ration Mech Anal, 2001, 158(1): 29-59 [23] Poupaud F, Soler J.Parabolic limit and stability of the Vlasov-Fokker-Planck system. Math Models Meth- ods Appl Sci, 2000, 10(7): 1027-1045 [24] Rein G, Weckler J.Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions. J Differ Equ, 1992, 99(1): 59-77 [25] Tanski I A.Fundamental solution of Fokker-Planck equation. arXiv:nlin/0407007, 2004 [26] Tanski I A. Fundamental solution of degenerated Fokker-Planck equation. arXiv:0804.0303, 2008 [27] Wu H, Lin T C, Liu C.Diffusion limit of kinetic equations for multiple species charged particles. Arch Rational Mech Anal, 2015, 215: 419-441 [28] Victory H D.On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems. J Math Anal Appl, 1991, 160(2): 525-555 [29] Victory H D, O’Dwyer B P. On classical solutions of Vlasov-Poisson-Fokker-Planck systems. Indiana Univ Math J, 1990, 39(1): 105-156 [30] Wang W, Wu Z.Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi- dimensions. J Diff Equs, 2010, 248: 1617-1636 [31] Wang W, Wu Z.Pointwise estimates of solution for non-isentoopic Navier-Stokes-Poisson equations in multi-dimensions. Acta Math Sci, 2012, 32B(5): 1681-1702 |