[1] Berge L, de Bouard A, Saut J C. Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrödinger equation. Nonlinearity, 1995, 8: 235–253 [2] Byeon J, Huh H. On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations. J Differential Equations, 2016, 261: 1285–1316 [3] Byeon J, Huh H, Seok J. Standing waves of nonlinear Schrödinger equations with the gauge field. J Funct Anal, 2012, 263: 1575–1608 [4] Cunha P L, d’Avenia P, Pomponio A, Siciliano G. A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity. Nonlinear Differ Equ Appl, 2015, 22: 1831–1850 [5] Chen S T, Zhang B Z, Tang X H. Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons- Schrödinger system in H1($\mathbb{R}^2$). Nonlinear Analysis, 2019, 185: 68–96 [6] d’Avenia P, Pomponio A. Standing waves for a Schrödinger-Chern-Simons-Higgs system. J Differential Equations, 2020, 268: 2151–2162 [7] Deng J. The existence of solutions for the Schrödinger Chern-Simons-Higgs system. Acta Mathematica Scientia, 2021, 41A(6): 1768–1778 [8] Deng J, Li B N, Yang J F. Solutions to strongly indefinite Chern-Simons-Schrödinger system. Preprint [9] Dunne G V, Trugenberger C A. Self-duality and nonrelativistic Maxwell-Chern-Simons solitons. Phys Rev D, 1991, 43: 1323–1331 [10] Huh H. Standing waves of the Schrödinger equation coupled with the Chern-Simons gauged field. J Math Phys, 2012, 53: 063702 [11] Han J, Huh H, Seok J. Chern-Simons limit of the standing wave solutions for the Schrödinger equations coupled with a neutral scalar field. J Funct Anal, 2014, 266: 318–342 [12] Han J, Song K. On the Chern-Simons limit for a Maxwell-Chern-Simons model on bounded domains. J Math Anal Appl, 2009, 350: 1–8 [13] Jackiw R, Pi S. Classical and quantal nonrelativistic Chern-Simons theory. Phys Rev D, 1990, 42: 3500–3513 [14] Jackiw R, Pi S. Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys Rev Lett, 1990, 64: 2969–2972 [15] Jackiw R, Pi S. Self-dual Chern-Simons solitons. Progr Theoret Phys Suppl, 1992, 107: 1–40 [16] Jackiw R, Templeton S. How super-renormalizable interactions cure their infrared divergences. Phys Rev D, 1981, 23: 2291–304 [17] Li L Y, Yang J F, Yang J G. Solutions to Chern-Simons-Schrödinger systems with external potential. Dis Conti Dyn Sys S, 2021, 14: 1967–1981 [18] Martina L, Pashaev O K, Soliani G. Chern-Simons gauge field theory of two dimensional ferromagnets. Phys Rev B, 1993, 48: 15787–15791 [19] Pomponio A, Ruiz D. A variational analysis of a gauged nonlinear Schrödinger equation. J Eur Math Soc, 2015, 17: 1463–1486 [20] Pomponio A, Ruiz D. Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calc Var Partial Differential Equations, 2015, 53: 289–316 [21] Tan J, Li Y, Tang C. The existence and concentration of ground state solutions for Chern-Simons-Schrödinger systems with a steep well potential. Acta Mathematica Scientia, 2022, 42B(3): 1125–1140 [22] Wan Y, Tan J. Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition. J Math Anal Appl, 2014, 415: 422–434 [23] Wan Y, Tan J. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete Contin Dyn Syst, 2017, 37: 2765–2786 [24] Willem M. Minimax theorems. Progress in Nonlinear Differential Equations and Their Applications, 24. Boston MA: Birkhäuser Boston, Inc, 1996 |