[1] Bacaër N. A Short History of Mathematical Population Dynamics. Springer-Verlag, 2011 [2] Bazykin A. Nonlinear Dynamics of Interacting Populations. World Scientific Publishing Co Pte Ltd, 1998 [3] Berryman A A, Gutierrez A P, Arditi R. Credible, parsimonious and useful predator-prey models. A reply to Abrams, Gleeson and Sarnelle. Ecology, 1995, 76: 1980–1985 [4] Dumortier F, Llibre J, Artés J C. Qualitative Theory of Planar Differential Systems. Springer, 2006 [5] Gonzalez-Olivares E, Rojas-Palma A. Global stability in a modified Leslie-Gower type predation model assuming mutual interference among generalist predators. Math Biosci Eng, 2020, 17: 7708–7731 [6] Han Q, Chen L, Jiang D. Periodic solution and stationary distribution for stochastic predator-prey model with modified Leslie-Gower and Holling type II schemes. Filomat, 2020, 34: 1383–1402 [7] Hou Z. Geometric method for global stability of discrete population models. Discrete Contin Dyn Syst Ser B, 2020, 25: 3305–3334 [8] Junior A B, Maidana N A. A modified Leslie-Gower predator-prey model with alternative food and selective predation of noninfected prey. Math Methods Appl Sci, 2021, 44: 3441–3467 [9] Leslie P H, Gower J C. The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika, 1960, 47: 219–234 [10] Liu Y, Wei J. Spatiotemporal dynamics of a modified Leslie-Gower model with weak Allee effect. Internat J Bifur Chaos Appl Sci Engrg, 2020, 30: 2050169 [11] Ma R, Bai Y, Wang F. Dynamical behavior analysis of a two-dimensional discrete predator-prey model with prey refuge and fear factor. J Appl Anal Comput, 2020, 10: 1683–1697 [12] Ma L, Liu B. Dynamic analysis and optimal control of a fractional order singular Leslie-Gower prey-predator model. Acta Math Sci, 2020, 40B: 1525–1552 [13] Markus L. Global structure of ordinary differential equations in the plane. Trans Amer Math Soc, 1954, 76: 127–148 [14] May R M. Stability and Complexity in Model Ecosystems. 2nd ed. Princeton University Press, 2001 [15] Murray J D. Mathematical Biology. New-York: Springer-Verlag, 1989 [16] Neumann D A. Classification of continuous flows on 2-manifolds. Proc Amer Math Soc, 1975, 48: 73–81 [17] Peixoto M. Dynamical systems//Proceedings of a Symposium Held at the University of Bahia. New York: Acad Press, 1973: 389–420 [18] Poincaré H. Mémoire sur les courbes définies par les équations différentielles. J Math, 1881, 37: 375–422; Oeuvres de Henri Poincaré, vol I. Gauthier-Villars, Paris, 1951: 3–84 [19] Puchuri L, González-Olivares E, Rojas-Palma A. Multistability in a Leslie-Gower-type predation model with a rational nonmonotonic functional response and generalist predators. Comput Math Methods, 2020, 2: e1070 [20] Singh A, Preeti M, Malik P. Hopf bifurcation and chaos in a Leslie-Gower prey-predator model with discrete delays. Int J Biomath, 2020, 13: 2050048 [21] Su J. Degenerate Hopf bifurcation in a Leslie-Gower predator-prey model with predator harvest. Adv Difference Equ, 2020, Art 194 [22] Tiwari V, Tripathi J P, Upadhyay R K, Ranjit K, Wu Y P, Wang J S, Sun G Q. Predator-prey interaction system with mutually interfering predator: role of feedback control. Appl Math Model, 2020, 87: 222–244 [23] Tsvetkov D, Angelova-Slavova R. Positive periodic solutions for periodic predator-prey systems of Leslie-Gower or Holling-Tanner type. Nonlinear Stud, 2020, 27: 991–1002 [24] Turchin P. Complex population dynamics. A theoretical/empirical synthesis//Monographs in Population Biology 35. Princeton University Press, 2003 [25] Volterra V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memorie della R. Accademia dei Lincei, S.VI, IT 1926; II: 31–113 [26] Wang X, Tan Y, Cai Y, Wang W. Impact of the fear effect on the stability and bifurcation of a Leslie-Gower predator-prey model. Internat J Bifur Chaos Appl Sci Engrg, 2020, 30: 2050210 [27] Wu F. Propagation threshold in an integrodifference predator-prey system of Leslie-Gower type. J Difference Equ Appl, 2021, 27: 26–40 [28] Yan X P, Zhang C H. Stability of a delayed diffusive predator-prey model with prey harvesting of Michaelis-Menten type. Appl Math Lett, 2021, 114: 106904 [29] Ye P, Wu D. Impacts of strong Allee effect and hunting cooperation for a Leslie-Gower predator-prey system. Chinese J Phys, 2020, 68: 49–64 [30] Zhao H, Wu D. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete Contin Dyn Syst Ser S, 2020, 13: 3271–3284 [31] Zou R, Guo S. Dynamics of a Leslie-Gower predator-prey system with cross-diffusion. Electron J Qual Theory Differ Equ, 2020, Art 65 [32] Zou R, Guo S. Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment. Discrete Contin Dyn Syst Ser B, 2020, 25: 4189–4210 [33] Zuo WQ, Ma Z P, Cheng Z B. Spatiotemporal dynamics induced by Michaelis-Menten type prey harvesting in a diffusive Leslie-Gower predator-prey model. Internat J Bifur Chaos Appl Sci Engrg, 2020, 30: 2050204 |