数学物理学报(英文版) ›› 2022, Vol. 42 ›› Issue (5): 1734-1742.doi: 10.1007/s10473-022-0502-4

• 论文 • 上一篇    

PHASE PORTRAITS OF THE LESLIE-GOWER SYSTEM

Jaume LLIBRE1, Claudia VALLS2   

  1. 1. Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain;
    2. Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
  • 收稿日期:2021-05-12 修回日期:2021-12-08 发布日期:2022-11-02
  • 通讯作者: Claudia Valls,E-mail:cvalls@math.tecnico.ulisboa.pt E-mail:cvalls@math.tecnico.ulisboa.pt
  • 基金资助:
    The first author was supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00 and the H2020 European Research Council grant MSCA-RISE-2017-777911. The second author was partially supported by FCT/Portugal through CAMGSD, IST-ID, projects UIDB/04459/2020 and UIDP/04459/2020.

PHASE PORTRAITS OF THE LESLIE-GOWER SYSTEM

Jaume LLIBRE1, Claudia VALLS2   

  1. 1. Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain;
    2. Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
  • Received:2021-05-12 Revised:2021-12-08 Published:2022-11-02
  • Contact: Claudia Valls,E-mail:cvalls@math.tecnico.ulisboa.pt E-mail:cvalls@math.tecnico.ulisboa.pt
  • Supported by:
    The first author was supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00 and the H2020 European Research Council grant MSCA-RISE-2017-777911. The second author was partially supported by FCT/Portugal through CAMGSD, IST-ID, projects UIDB/04459/2020 and UIDP/04459/2020.

摘要: In this paper we characterize the phase portraits of the Leslie-Gower model for competition among species. We give the complete description of their phase portraits in the Poincaré disc (i.e., in the compactification of $\mathbb{R}^2$ adding the circle $\mathbb{S}^1$ of the infinity) modulo topological equivalence.
It is well-known that the equilibrium point of the Leslie-Gower model in the interior of the positive quadrant is a global attractor in this open quadrant, and in this paper we characterize where the orbits attracted by this equilibrium born.

关键词: predator-prey models, Leslie-Gower system, Poincaré compactification, global phase portraits

Abstract: In this paper we characterize the phase portraits of the Leslie-Gower model for competition among species. We give the complete description of their phase portraits in the Poincaré disc (i.e., in the compactification of $\mathbb{R}^2$ adding the circle $\mathbb{S}^1$ of the infinity) modulo topological equivalence.
It is well-known that the equilibrium point of the Leslie-Gower model in the interior of the positive quadrant is a global attractor in this open quadrant, and in this paper we characterize where the orbits attracted by this equilibrium born.

Key words: predator-prey models, Leslie-Gower system, Poincaré compactification, global phase portraits

中图分类号: 

  • 34A05