[1] Alì G. Global existence of smooth solutions of the N-dimensional Euler-Poisson model. SIAM J Appl Math, 2003, 35(2):389-422 [2] Chen F. Introduction to Plasma Physics and Controlled Fusion. Vol 1. New York:Plenum Press, 1984 [3] Jüngel A. Quasi-Hydrodynamic Semiconductor Equations//Prog Nonlinear Diff Eqs Appl. Berlin:Birkhäuser, 2001 [4] Liu C M, Peng Y J, Convergence of a non-isentropic Euler-Poisson system for all time. J Math Pures Appl, 2018, 119:255-279 [5] Alì G, Chen L, Jüngel A, et al. The zero-electron-mass limit in the hydrodynamic model for plasmas. Nonlinear Anal, 2010, 72(12):4415-4427 [6] Chen L, Donatelli D, Marcati P. Incompressible type limit analysis of a hydrodynamic model for charge-carrier transport. SIAM J Math Anal, 2013, 45(3):915-933 [7] Juüngel A, Peng Y J, A hierarchy of hydrodynamic models for plasmas:zero-relaxationtime limits. Comm Partial Diff Eqs, 1999, 24:1007-1033 [8] Peng Y J. Uniformly global smooth solutions and convergence of Euler-Poisson systems with small parameters. SIAM J Math Anal, 2015, 47(2):1355-1376 [9] Wasiolek V. Uniform global existence and convergence of Euler-Maxwell systems with small parameters. Comm Pure Appl Anal, 2016, 15(6):2007-2021 [10] Xu J, Zhang T. Zero-electron-mass limit of Euler-Poisson equations. Discrete Contin Dyn Syst, 2013, 33(10):4743-4768 [11] Yang Y F, Hu H F, Uniform global convergence of non-isentropic Euler-Maxwell systems with dissipation. Nonlinear Anal Real World Appl, 2019, 47:332-347 [12] Yong W A. Diffusive relaxation limit of multidimensional isentropic hydrodynamical models for semiconductors. SIAM J Appl Math, 2004, 64(5):1737-1748 [13] Cordier S, Grenier E, Quasineutral limit of an Euler-Poisson system arising from plasma physics. Comm Partial Diff Eqs, 2000, 25:1099-1113 [14] Wang S, Quasineutral limit of Euler-Poisson system with and without viscosity. Comm Partial Diff Eqs, 2004, 29:419-456 [15] Peng Y J, Wang S, Convergence of compressible Euler-Maxwell equations to incompressible Euler equations. Comm Partial Diff Eqs, 2008, 33:349-376 [16] Peng Y J, Wang S, Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete Contin Dyn Syst, 2009, 23:415-433 [17] Cheng B, Ju Q C. Schochet S, Three-scale singular limits of evolutionary PDEs. Arch Ration Mech Anal, 2018, 229:601-625 [18] Luo T, Wang Y L. Multi-scale nonlinear singular limit for thermal non-equilibrium gas flow with multiple non-equilibrium modes for analytic data in multi-dimensions with physical boundaries. J Math Phys, 2020, 61(10):101512 [19] Kato T, The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch Ration Mech Anal, 1975, 58:181-205 [20] Lax P D. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM Regional Conf Lecture, No 11. Philadelphia, 1973 [21] Majda A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. New York:Springer-Verlag, 1984 [22] Hsiao L, Markowich P A, Wang S. The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamical model for semiconductors. J Diff Eqs, 2003, 192(1):111-133 [23] Jiang S, Ou Y B. Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains. J Math Pures Appl, 2011, 96(1):1-28 [24] Klainerman S, Majda A. Singular limit of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm Pures Appl Math, 1981, 34(4):481-524 [25] Peng Y J. Stability of non-constant equilibrium solutions for Euler-Maxwell equations. J Math Pures Appl, 2015, 103(1):39-67 [26] Tao T. Nonlinear Dispersive Equations:Local and Global Analysis. CBMS Reg Conf Ser Math Vol 106. Providence, RI:AMS, 2006 [27] Simon J, Compact sets in the space Lp(0, T; B). Ann Mat Pura Appl, 1987, 146:65-96 [28] Chemin J Y. Fluides Parfaits Incompressibles. Astérisque, 1995, 230 |