[1] Benedek A, Panzone R. The space Lp with mixed norm. Duke Math J, 1961, 28:301-324 [2] Bergh J, Löfström J. Interpolation Spaces. Berlin:Springer-Verlag, 1976 [3] Bosia S, Pata V, Robinson J. A Weak-Lp Prodi-Serrin Type Regularity Criterion for the Navier-Stokes Equations. J Math Fluid Mech, 2014, 16:721-725 [4] Carrillo J A, Ferreira L C F. Self-similar solutions and large time asymptotics for the dissipative quasigeostrophic equation. Monatsh Math, 2007, 151:111-142 [5] Chen Z, Price W G. Blow-up rate estimates for weak solutions of the Navier-Stokes equations. (English summary) R Soc Lond Proc Ser A Math Phys Eng Sci, 2001, 457:2625-2642 [6] Cho Y, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluid. J Math Pures Appl, 2004, 83:243-275 [7] Cho Y, Kim H. Existence results for viscous polytropic fluids with vacuum. J Differential Equations, 2006, 228:377-411 [8] Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids. Comm PDE, 2003, 28:1183-1201 [9] Choe H, Yang M. Blow up criteria for the compressible Navier-Stokes equations. Mathematical analysis in fluid mechanics-selected recent results. Contemp Math, 710:65-84. Providence, RI:Amer Math Soc, 2018 [10] Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford:Oxford Univ Press, 2004 [11] Guo Z, Caggio M, Skalàk Z. Regularity criteria for the Navier-Stokes equations based on one component of velocity. Nonlinear Anal Real World Appl, 2017, 35:379-396 [12] Gustafson S, Kang K, Tsai T. Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations. Commun Math Phys, 2007, 273:161-176 [13] Grafakos L. Classical Fourier analysis. 2nd Edition, Springer, 2008 [14] Huang X, Li J. Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows. Comm Math Phys, 2013, 324:147-171 [15] Huang X, Li J, Wang Y. Serrin-type blowup criterion for full compressible Navier-Stokes system. Arch Ration Mech Anal, 2013, 207:303-316 [16] Huang X, Li J, Xin Z. Serrin type criterion for the three-dimensional compressible flows. SIAM J Math Anal, 2011, 43:1872-1886 [17] Huang X, Xin Z. A blow-up criterion for classical solutions to the compressible Navier-Stokes equations. Sci China Math, 2010, 53:671-686 [18] Jiu Q, Wang Y, Ye Y. Refined blow up criteria for the full compressible Navier-Stokes equations involving temperature. J Evol Equ, 2021, 21:1895-1916 [19] Ji X, Wang Y, Wei W. New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. J Math Fluid Mech, 2020, 22:13 [20] Kim H, Kozono H. Interior regularity criteria in weak spaces for the Navier-Stokes equations. Manuscripta Math, 2004, 115:85-100 [21] Kim H. A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations. SIAM J Math Anal, 2006, 37:1417-1434 [22] Lei Z, Xin Z. On scaling invariance and type-I singularities for the compressible Navier-Stokes equations. Sci China Math, 2019, 62:2271-2286 [23] Lions P L. Mathematical topics in fluid mechanics. Vol 2. Compressible models. New York:Oxford University Press, 1998 [24] Malý J. Advanced theory of differentiation-Lorentz spaces. March 2003. http://www.karlin.mff.cuni.cz/?maly/lorentz.pdf [25] O'Neil R. Convolution operaters and Lp,q spaces. Duke Math J, 1963, 30:129-142 [26] Rubio de Francia J L, Ruiz F J, Torrea J L. Calderon-Zygmund theory for operator-valued kernels. Adv Math, 1986, 62:7-48 [27] Serrin J. On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Rational Mech Anal, 1962, 9:187-195 [28] Sun Y, Wang C, Zhang Z. A Beale-Kato-Majda blow-up criterion for the 3D compressible Navier-Stokes equations. J Math Pures Appl, 2011, 95:36-47 [29] Sun Y, Wang C, Zhang Z. A Beale-Kato-Majda criterion for three dimensional compressible viscous heatconductive flows. Arch Ration Mech Anal, 2011, 201:727-742 [30] Sun Y, Zhang Z. Blow-up criteria of strong solutions and conditional regularity of weak solutions for the compressible Navier-Stokes equations//Handbook of mathematical analysis in mechanics of viscous fluids. Cham:Springer, 2018:2263-2324 [31] Struwe M. On partial regularity results for the Navier-Stokes equations. Comm Pure Appl Math, 1988, 41:437-458 [32] Sohr H. A regularity class for the Navier-Stokes equations in Lorentz spaces. J Evol Equ, 2001, 1:441-467 [33] Tartar L. Imbedding theorems of Sobolev spaces into Lorentz spaces. Bollettino dell'Unione Matematica Italiana, 1998, 1:479-500 [34] Wang Y, Wu G, Zhou D. ε-regularity criteria in anisotropic Lebesgue spaces and Leray's self-similar solutions to the 3D Navier-Stokes equations. Z Angew Math Phys, 2020, 71:164 [35] Wang Y, Wei W, Yu H. ε-regularity criteria for the 3D Navier-Stokes equations in Lorentz spaces. J Evol Equ, 2021, 21:1627-1650 [36] Wang Y. Weak Serrin-type blowup criterion for three-dimensional nonhomogeneous viscous incompressible heat conducting flows. Phys D, 2020, 402:132203 [37] Wen H, Zhu C. Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum. Adv Math, 2013, 248:534-572 [38] Xu X, Zhang J. A blow-up criterion for 3D compressible magnetohydrodynamic equations with vacuum. Math Models Method Appl Sci, 2012, 22:1150010 [39] Zheng X. A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component. J Differential Equations, 2014, 256:283-309 |