[1] Aizicovici S, Papageorgiou N S, Staicu V. Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints. Mem Amer Math Soc, 2008, 196:1-70 [2] Cingolani S, Degiovanni M. Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity. Comm Partial Differential Equations, 2005, 30:1191-1203 [3] Díaz J I, Saa J E. Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C R Acad Sci Paris Sér I Math, 1987, 305:521-524 [4] Filippakis M E, Papageorgiou N S. Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian. J Differential Equations, 2008, 245:1883-1922 [5] Gasiński L, Papageorgiou N S. Nonlinear Analysis, Ser Math Anal Appl 9. Boca Raton:Chapman & Hall/CRC, 2006 [6] Gasiński L, Papageorgiou N S. Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential. Set-Valued Var Anal, 2012, 20:417-443 [7] Gasiński L, Papageorgiou N S. Multiple solutions for asymptotically (p-1)-homogeneous p-Laplacian equations. J Funct Anal, 2012, 262:2403-2435 [8] Gasiński L, Papageorgiou N S. Exercises in Analysis. Part 2. Nonlinear Analysis, Problem Books in Mathematics. Cham:Springer, 2016 [9] Gasiński L, Papageorgiou N S. Positive solutions for the Robin p-Laplacian problem with competing nonlinearities. Adv Calc Var, 2019, 12:31-56 [10] He T, Lei Y, Zhang M, Sun H. Nodal solutions for resonant and superlinear (p, 2)-equations. Math Nachr, 2018, 291:2565-2577 [11] Hu S, Papageorgiou N S. Handbook of Multivalued Analysis, Vol. I:Theory, Mathematics and its Applications, 419. Dordrecht:Kluwer Academic Publishers, The Netherlands, 1997 [12] Ladyzhenskaya O, Ural'tseva N. Linear and Quasilinear Elliptic Equations. New York:Academic Press, 1968 [13] Leonardi S, Papageorgiou N S. On a class of critical Robin problems. Forum Math, 2020, 32:95-109 [14] Lieberman G M. The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Comm Partial Differential Equations, 1991, 16:311-361 [15] Marano S A, Papageorgiou N S. Constant sign and nodal solutions of coercive (p, q)-Laplacian problems. Nonlinear Anal, 2013, 77:118-129 [16] Medeiros E, Perera K. Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index. Nonlinear Anal, 2009, 71:3654-3660 [17] Papageorgiou N S, Rădulescu V D. Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance. Appl Math Optim, 2014, 69:393-430 [18] Papageorgiou N S, Rădulescu V D, Repovš D D. On a class of parametric (p, 2)-equations. Appl Math Optim, 2017, 75:193-228 [19] Papageorgiou N S, Rădulescu V D, Repovš D D. Noncoercive resonant (p, 2)-equations. Appl Math Optim, 2017, 76:621-639 [20] Papageorgiou N S, Rădulescu V D, Repovš D D. Nonlinear Analysis-Theory and Methods. Switzerland:Springer, 2019 [21] Papageorgiou N S, Vetro C, Vetro F. Multiple solutions with sign information for a class of coercive (p, 2)-equations. Bull Malays Math Sci Soc, 2020, 43:2343-2371 [22] Papageorgiou N S, Vetro C, Vetro F. Multiple solutions with sign information for a (p, 2)-equation with combined nonlinearities. Nonlinear Anal, 2020, 192:111716 [23] Pucci P, Serrin J. The Maximum Principle. Basel:Birkhäuser Verlag, 2007 |