[1] Ambrosetti A, Brezis H, Cerami G. Combined effects of concave and convex nonlinearities in some elliptic problems. J Functional Anal, 1994, 22:519-543 [2] Bahrouni A, Radulescu V D, Repovs D. Double phase transonic flow problems with variable growth:nonlinear patterns and stationary waves. Nonlinearity, 2019, 32:2481-2495 [3] Benci V, D'Avenia P, Fortunato D, Pisani L. Solitons in several space dimensions:Derrick's problem and infinitely many solutions. Arch Rational Mech Anal, 2000, 154:297-324 [4] Casas E, Fernandez L A. A Green's formula for quasilinear elliptic operators. J Math Anal Appl, 1989, 142:62-73 [5] Chen F F, Yang Y. Existence of solutions for the fractional (p, q)-Laplacian problems involving a critical Sobolev exponent. Acta Mathematica Scientia, 2020, 40B(6):1666-1678 [6] Cherfils L, Ilyasov Y. On the stationary solutions of generalized reaction diffusion equations with (p, q)- Laplacian. Comm Pure Appl Anal, 2005, 4:9-22 [7] Deng S G. Positive solutions for Robin problem involving the p(x)-Laplacian. J Math Anal Appl, 2009, 360:548-560 [8] Diening L, Harjulehto P, Hästo P, Ruzicka M. Lebesgue and Sobolev Spaces with Variable Exponent. Lecture Notes in Math, Vol 2017. Heidelberg:Springer, 2011 [9] Fan X. Global C1,α regularity for variable exponent elliptic equations in divergence form. J Differential Equ, 2007, 235:397-417 [10] Fan X. Boundary trace embedding theorems for variable exponent Sobolev spaces. J Math Anal Appl, 2008, 339:1395-1412 [11] Fan X X, Zhao D. A class of De Giorgi type and Hölder continuity. Nonlin Anal, 1999, 36:295-318 [12] Garcia Azorero J, Manfredi J, Peral Alonso I. Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Comm Contemp Math, 2000, 2:385-404 [13] Gasinski L, Papageorgiou N S. Nonlinear Analysis. Boca Raton, FL:Chapman & Hall/CRC, 2006 [14] Gasinski L, Papageorgiou N S. Anisotropic nonlinear Neumann problems. Calc Var, 2011, 42:323-354 [15] Hu S, Papageorgiou N S. Handbook of Multivalued Analysis, Volume I:Theory. Dordrecht, The Netherlands:Kluwer Academic Publishers, 1997 [16] Kenmochi N. Pseudomonotone operators and nonlinear elliptic boundary value problems. J Math Soc Japan, 1975, 27:121-149 [17] Leonardi S, Papageorgiou N S. Positive solutions for nonlinear Robin problems with indefinite potential and competing nonlinearities. Positivity, 2020, 24:339-367 [18] Lieberman G. The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Comm Partial Diff Equ, 1991, 16:311-361 [19] Marano S, Marino G, Papageorgiou N S. On the Dirichlet problem with (p, q)-Laplacian and parametric concave-convex nonlinearity. J Math Anal Appl, 2019, 475:1093-1107 [20] Marano S, Mosconi S. Some recent results on the Dirichlet problem for (p, q)-Laplace equations. Disc Cont Dyn Syst Ser S, 2018, 11:279-291 [21] Motreanu D, Motreanu V V, Papageorgiou N S. Existence and nonexistence of positive solutions for parametric Neumann problems with p-Laplacian. Tohoku Math J, 2014, 66(1):137-153 [22] Motreanu D, Motreanu V V, Papageorgiou N S. Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. New York:Springer, 2014 [23] Molica Bisci G, Radulescu V, Servadei R. Competition phenomena for elliptic equations involving a general operator in divergence form. Anal Appl, 2017, 15:51-82 [24] Papageorgiou N S, Qin D, Radulescu V D. Anisotropic double phase problems with indefinite potential:Multiplicity of solutions. Anal Math Phys, 2020, 10(4):63 [25] Papageorgiou N S, Radulescu V D, Repovs D. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discr Cont Dyn Syst, 2017, 37:2589-2618 [26] Papageorgiou N S, Radulescu V D, Repovs D. Nonlinear Analysis-Theory and Methods. Swizerland AG:Springer Nature, 2019 [27] Papageorgiou N S, Radulescu V D, Repovs D. Anisotropic equations with indefinite potential and compacting nonlinearities. Nonl Anal, TMA, 2020, 201:Art111861 [28] Papageorgiou N S, Repovs D, Vetro C. Nonlinear nonhomogeneous Robin problems with almost critical and partially concave reaction. J Geometric Anal, doi:10.110z/s12220-019-00278-0 [29] Papageorgiou N S, Vetro C, Vetro F. Landesman-Lazer type (p, q)-equations with Neumann condition. Acta Mathematica Scientia, 2020, 40B(4):991-1000 [30] Papageorgiou N S, Winkert P. Applied Nonlinear Functional Analysis. Berlin:De Grugler, 2018 [31] Papageorgiou N S, Zhang C. Noncoercive resonant (p, 2)-equations with concave terms. Adv Nonlin Anal, 2020, 9:228-249 [32] Radulescu V D. Isotropic and anisotropic double-phase problems:old and new. Opuscula Math, 2019, 39:259-280 [33] Radulescu V D, Repovs D. Partial Differential Equations with Variable Exponents:Variational Methods and Qualitative Analysis. Boca Raton, FL:CRC Press, Taylor and Francis Group, 2015 [34] Takač P, Giacomoni J. A p(x)-Laplacian extension of the Diaz-Saa inequality and some applications. Proc Royal Soc Edinburgh, 2020, 150:205-232 [35] Tan Z, Fang F. Orlicz Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations. J Math Anal Appl, 2013, 402:348-370 [36] Zhang Q. A strong maximum principle for differential equations with nonstandard p(x)-growth conditions. J Math Anal Appl, 2005, 312:125-143 [37] Zhikov V V. On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J Math Sci, 2011, 173:463-570 |