[1] Bartnik R. Existence of maximal surfaces in asymptotically flat spacetimes. Comm Math Phys, 1984, 94(2): 155–175
[2] Cabezas-Rivas E, Miquel V. Volume preserving mean curvature flow in the hyperbolic space. Indiana Univ Math J, 2007, 56(5): 2061–2086
[3] Cabezas-Rivas E, Sinestrari C. Volume-preserving flow by powers of the mth mean curvature. Calc Var, 2010, 38: 441–469
[4] Canary R D, Epstein D B A, Green P L. Notes on notes of Thurston//Canary R, Marden A, Epstein D B A, eds. Fundamentals of Hyperbolic Geometry: Selected Expositions. London Math Soc Lecture Note Ser, 328. Cambridge: Cambridge Univ Press, 2006: 1–115
[5] Chow B, Knopf D. The Ricci flow: An Introduction. Mathematical Surveys Monographs, 110. Providence, RI: American Mathematical Society, 2004
[6] Ecker K, Huisken G. Parabolic methods for the constraction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Comm Math Phys, 1991, 135(3): 595–613
[7] Ecker K. Mean curvature flow of spacelike hypersurfaces near null initial data. Comm Anal Geom, 2003, 11(2): 181–205
[8] Hamilton R S. Three-manifolds with positive Ricci curvature. J Diff Geom, 1982, 17(2): 255–306
[9] Huisken G. The volume preserving mean curvature flow. J Reine Angew Math, 1987, 382: 35–48
[10] Huisken G. Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent Math, 1996, 84(3): 463–480
[11] Huisken G, Yau S T. Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Invent Math, 1996, 124(1–3): 281–311
[12] Lehto O. Univalent Functions and Teichm¨uller Spaces. Graduate Texts in Mathematics, 109. New York: Springer-Verlag, 1987
[13] Lieberman G M. Second Order Parabolic Differential Equations. River Edge, NJ: World Scientific Publishing Co Inc, 1996
[14] Li G, Salavessa I. Forced convex mean curvature flow in Euclidean spaces. Manuscripta Math, 2008, 126: 333–351
[15] Marden A. The geometry of finitely generated kleinian groups. Ann Math, 1974, 99(2): 383–462
[16] Maskit B. On boundaries of Teichm¨uller spaces and on Kleinian groups, II. Ann Math, 1970, 91(2): 607–639
[17] McCoy J. The surface area preserving mean curvature flow. Asian J Math 2003, 7(1): 7–30
[18] Pihan D M. A Length Preserving Geometric Heat Flow for Curves[D]. Melbourne: University of Melbourne, 1998
[19] Schulze F. Convexity estimates for flows by powers of the mean curvature. Ann Sc Norm Super, Pisc Cl Sci, 2006, 5(5): 261–277
[20] Thurston William P. The geometry and topology of three-manifolds. http://www.msri.org/publications/ books/gt3m/, 1980
[21] Wang B. Foliations for quasi-Fuchsian 3-manifolds. arXiv:0809.4057v1
[22] Uhlenbeck Karen K. Closed minimal surfaces in hyperbolic 3-manifolds//Seminar on minimal submanifolds. Ann of Math Stud, 103. Princeton, NJ: Princeton Univ Press, 1983: 147–168 |