[1] Abidi H, Zhang P. On the global solution for a 3-D MHD system with initial data near equilibrium. Comm Pure Appl Math, 2017, 70(8):1509-1561 [2] Alfvén H. Existence of electromagnetic-hydrodynamic waves. Nature, 1942, 150(2):3763-3767 [3] Biskamp D. Nonlinear Magnetohydrodynamics. Cambridge:Cambridge University Press, 1993 [4] Cao C S, Wu J H, Yuan B Q. The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion. SIAM J Math Anal, 2013, 46(1):588-602 [5] Davidson P. An Introduction to Magnetohydrodynamics. Cambridge:Cambridge University Press, 2001 [6] Deng W, Zhang P. Large time behavior of solutions to 3-D MHD system with initial data near equilibrium. Arch Ration Mech Anal, 2018, 230(3):1017-1102 [7] Dong B Q, Li J N, Wu J H. Global well-posedness and large-time decay for the 2D micropolar equations. J Differential Equations, 2017, 262(6):3488-3523 [8] Duvaut G, Lions J L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch Ration Mech Anal, 1972, 46(4):241-279 [9] He C, Xin Z P. On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213(2):235-254 [10] Ji R H, Lin H X, Wu J H, et al. Stability for a system of the 2D magnetohydrodynamic equations with partial dissipation. Appl Math Lett, 2019, 94:244-249 [11] Jiu Q S, He C. Remarks on the regularity to 3-D ideal magnetohydrodynamic equations. Acta Math Sin, 2004, 20(4):695-708 [12] Jiu Q S, Yu H. Decay of solutions to the three-dimensional generalized Navier-Stokes equations. Asymptot Anal, 2015, 94(1/2):105-124 [13] Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41(7):891-907 [14] Kenig C, Ponce G, Vega L. Well-posedness of the initial value problem for the Korteweg-Vries equation. J Amer Math Soc, 1991, 4(2):323-347 [15] Li M, Shang H F. Large time decay of solutions for the 3D magneto-micropolar equations. Nonlinear Anal Real World Appl, 2018, 44:479-496 [16] Lin F H, Xu L, Zhang P. Global small solutions of 2-D incompressible MHD system. J Differential Equations, [19] Priest E. Magnetic Reconnection:MHD Theory and Applications. Cambridge:Cambridge University Press, 2000 [20] Ren X X, Wu J H, Xiang Z Y, et al. Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J Funct Anal, 2014, 267(2):503-541 [21] Ren X X, Xiang Z Y, Zhang Z F. Global existence and decay of smooth solutions for the 3-D MHD-type equations without magnetic diffusion. Sci China Math, 2016, 59(10):1949-1974 [22] Schonbek M E, Large time behavior of solutions to the Navier-Stokes equations. Comm Partial Differential Equations, 1983, 11(7):733-763 [23] Schonbek M E, Dafermos C. L2 decay for weak solutions of the Navier-Stokes equations. Arch Rational Mech Anal, 1985, 88(3):209-222 [24] Schonbek M E, Schonbek T P, Süli Endre. Large-time behaviour of solutions to the magnetohydrodynamics equations. Math Ann, 1996, 304(1):717-756 [25] Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36(5):635-664 [26] Wan R H. Optimal decay estimate of strong solutions for the 3D incompressible Oldroyd-B model without damping. Pacific J Math, 2019, 301(2):667-701 [27] Wei D Y, Zhang Z F. Global well-posedness of the MHD equations in a homogeneous magnetic field. Anal PED, 2017, 10(6):1361-1406 [28] Wu J H, Zhu Y. Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium. Adv Math, 2021, 377(1):107466 [29] Ye Z. Global regularity of the two-dimensional regularized MHD equations. Dyn Partial Differ Equ, 2019, 16(2):185-223 [30] Yuan B Q, Liu Y. Global existence and decay rate of strong solution to incompressible Oldroyd type model equations. Rocky Mountain J Math, 2018, 48(5):1703-17202015, 259(10):5440-5485 [17] Majda A, Bertozzi A. Vorticity and Incompressible Flow. Cambridge:Cambridge University Press, 2002 [18] Miao C X, Yuan B Q, Zhang B. Well-posedness for the incompressible magnetohydrodynamic system. Math Methods Appl Sci, 2010, 30(8):961-976 |