[1] Akhmediev N, Ankiewicz A. Partially coherent solitons on a finite background. Phys Rev Lett, 1999, 82(13):2661-2664 [2] Agrawal G P, Kivshar Y S. Optical solitons:from fibers to photonic crystals. Academic Press, 2003 [3] Akhmediev N, Królinowski W, Snyder A. Partially coherent solitons of variable shape. Phys Rev Lett, 1998, 81(21):4632-4635 [4] Berestycki H, Lions P L. Nonlinear scalar field equations, I, existence of a ground state. Arch Ration Mech Anal, 1983, 82(4):313-345 [5] Berestycki H, Lions P L. Nonlinear scalar field equations, Ⅱ, existence of infinitely many solutions. Arch Ration Mech Anal, 1983, 82(4):347-375 [6] Bartsch T, Willem M. Infinitely many radial solutions of a semilinear elliptic problem on $\mathbb{R}^N$. Arch Ration Mech Anal, 1993, 124(3):261-276 [7] Castro A, Cossio J, Neuberger J M. A sigh-changing solution for a superlinear Dirichlet problem. Rocky Mountain J Math, 1997, 27(4):1041-1053 [8] Conti M, Merizzi L, Terracini S. Radial solutions of superlinear equations on $R^N$, Part I, A global variational approach. Arch Ration Mech Anal, 2000, 153(4):291-316 [9] Cao D, Li S, Liu Z. Nodal solutions for a supercritical semilinear problem with variable exponent. Cal Var PDEs, 2018, 57(2):38 [10] Cao D, Zhu X. On the existence and nodal character of solutions of semilinear elliptic equation. Acta Mathematica Scientia, 1988, 8B(3):285-300 [11] Cerami G, Solimini S, Struwe M. Some existence results for superlinear elliptic boundary problems involving critical exponents. J Funct Anal, 1986, 69(3):289-306 [12] Deng Y. The existence and nodal character of the solutions in $\mathbb{R}^n$ for semilinear elliptic equation involving critical Sobolev exponent. Acta Mathematica Scientia, 1989, 9B(4):385-402 [13] Deng Y, Peng S, Shuai W. Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$. J Funct Anal, 2015, 269(11):3500-3527 [14] Deng Y, Peng S, Wang J. Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent. J Math Phys, 2013, 54(1):011504 [15] Deng Y, Peng S, Wang J. Nodal soliton solutions for generalized quasilinear Schrödinger equations. J Math Phys, 2014, 55(5):051501 [16] Kulpa W. The Poincaré-Miranda theorem. Amer Math Mon, 1997, 104(6):545-550 [17] Lin T C, Belić M R, Petrović M S, Chen G. Ground states of nonlinear Schrödinger systems with saturable nonlinearity in $\mathbb{R}^2$ for two counterpropagating beams. J Math Phys, 2014, 55(1):011505 [18] Lin T C, Belić M R, Petrović M S, Aleksić N B, Chen G. Ground-state counterpropagating solitons in photorefractive media with saturable nonlinearity. J Opt Soc Am B, 2013, 30(4):1036-1040 [19] Lin T C, Belić M R, Petrović M S, Hajaiej H, Chen G. The virial theorem and ground state energy estimates of nonlinear Schrödinger equations in $\mathbb{R}^2$ with square root and saturable nonlinearities in nonlinear optics. Cal Var PDEs, 2017, 56(5):147 [20] Liu T C, Wang X, Wang Z Q. Orbital stability and energy estimate of ground states of saturable nonlinear Schrödinger equations with intensity functions in $\mathbb{R}^2$. Journal Diff Equations, 2017, 263(8):4750-4786 [21] Litchinitser N M, Królikowski W, Akhmediev N N, Agrawal G P. Asymmetric partially coherent solitons in saturable nonlinear media. Phys Rev E, 1999, 60(2):2377-2380 [22] Liu Z, Wang Z Q. On the Ambrosetti-Rabinowitz superlinear condition. Adv Nonlinear Stud, 2004, 4(4):563-574 [23] Maia L A, Miyagaki O H, Soares S. A sign-changing solution for an asymptotically linear Schrödinger equation. Proc Edin Math Soc, 2015, 58(3):697-716 [24] Miranda C. Un'osservazione su un teorema di Brouwer. Boll Un Mat Ital, 1940, 3(2):5-7 [25] Nehari Z. Characteristic values associated with a class of nonlinear second order differential equations. Acta Math, 1961, 105(3/4):141-175 [26] Ostrovskaya E A, Kivshar Y S. Multi-hump optical solitons in a saturable medium. J Opt B:Quantum Semiclassical Opt, 1999, 1(1):77-83 [27] Pohozaev S. Eigenfunctions of the equations △u +λf(u)=0. Dokl Akad Nauk SSSR, 1965, 165(1):36-39 [28] Ryder G H. Boundary value problem for a class of nonlinear differential equations. Pacific J Math, 1967, 22(3):477-503 [29] Struwe M. Superlinear elliptic boundary value problems with rotational symmetry. Arch Math, 1982, 39(3):233-240 [30] Stuart C A. Guidance properties of nonlinear planar waveguides. Arch Ration Mech Anal, 1993, 125(2):145-200 [31] Serrin J, Tang M. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ Math J, 2000, 49(3):897-923 [32] Stuart C A, Zhou H S. Applying the mountain pass theorem to an asymptotically linear elliptic equation on $R^N$. Commun PDEs, 1999, 24(9/10):1731-1758 [33] Stegeman G I, Christodoulides D N, Segev M. Optical spatial solitons:historical Perspectives. IEEE J Sel Top Quantum Electron, 2000, 6(6):1419-1427 [34] Szulkin A, Weth T. The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications. Boston:International Press, 2010:597-632 [35] Wang X, Liu T C, Wang Z Q. Existence and concentration of ground states for saturable nonlinear Schrödinger equations with intensity functions in $\mathbb{R}^2$. Nonlinear Anal, 2018, 173:19-36 [36] Willem M. Minimax Theorems. Basel:Birkhäser, 1996 |