[1] Bajja S, Es-Sebaiy K, Viitasaari L. Least squares estimator of fractional Ornstein Uhlenbeck processes with periodic mean. J Korean Statist Soc, 2017, 46(4):608-622 [2] Chen Y, Kuang N, Li Y. Berry-Esseen bound for the Parameter Estimation of Fractional OrnsteinUhlenbeck Processes. Stoch Dyn, 2019, 20(4):2050023 [3] Chen Y, Li Y. Berry-Esseen bound for the Parameter Estimation of Fractional Ornstein-Uhlenbeck Processes with the Hurst Parameter H ∈ (0, 1/2). Comm Statist Theory Methods, https://doi.org/10.1080/03610926.2019.1678641 [4] Cheridito P, Kawaguchi H, Maejima M. Fractional Ornstein-Uhlenbeck processes. Electron J Probab, 2003, 8(3):1-14 [5] Chronopoulou A, Tudor C, Viens F G. Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes. Commun Stoch Anal, 2011, 5(1):161-185 [6] ehling H, Franke B, Kott T. Drift estimation for a periodic mean reversion process. Stat Inference Stoch Process, 2010, 13(3):175-192 [7] Dehling H, Franke B, Woerner J H C. Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean. Stat Inference Stoch Process, 2017, 20(1):1-14 [8] Dobrushin R L, Major P. Non-central limit theorems for non-linear functionals of Gaussian fields. Z Wahrscheinlichkeitstheorie verw Gebiete, 1979, 50:27-52 [9] Hamilton J D. Time Series Analysis. Princeton:Princeton University Press, 1994 [10] Hu Y, Nualart D. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statist Probab Lett, 2010, 80(11/12):1030-1038 [11] Hu Y, Nualart D, Zhou H. Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Stat Inference Stoch Process, 2019, 22(1):111-142 [12] Hu Y. Analysis on Gaussian spaces. Singapore:World Scientific, 2017 [13] Jiang H, Dong X. Parameter estimation for the non-stationary Ornstein-Uhlenbeck process with linear drift. Statist Papers, 2015, 56(1):257-268 [14] Kleptsyna M L, Le Breton A. Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Inference Stoch Process, 2002, 5(3):229-248 [15] Kloeden P, Neuenkirch A. The pathwise convergence of approximation schemes for stochastic differential equations. LMS J Comput Math, 2007, 10:235-253 [16] Kutoyants Y A. Statistical Inference for Ergodic Diffusion Processes. New York:Springer, 2004 [17] Maejima M, Tudor C. Wiener integrals with respect to the Hermite process and a non-central limit theorem. Stoch Anal Appl, 2007, 25(5):1043-1056 [18] Nourdin I, Diu Tran T. Statistical inference for Vasicek-type model driven by Hermite processes. Stochastic Process Appl, 2019, 129(10):3774-3791 [19] Nualart D, Zakai M. Generalized mulptiple stochastic integrals and the representation of Wiener functionals. Stochastics, 1987, 23(3):311-330 [20] Nualart D. Malliavin Calculus and Related Topics. New York:Springer, 2006 [21] Shevchenko R, Tudor C. Parameter estimation for the Rosenblatt Ornstein-Uhlenbeck process with periodic mean. Stat Inference Stoch Process, 2020, 23(3):227-247 [22] Taqqu M. Convergence of integrated processes of arbitrary Hermite rank. Z Wahrscheinlichkeitstheorie verw Gebiete, 1979, 50(1):53-83 [23] Tudor C. Analysis of variations for self-similar processes:A stochastic calculusapproach. Switzerland:Springer, 2013 [24] Xiao W, Zhang W, Xu W. Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation. Appl Math Model, 2011, 35(9):4196-4207 [25] Yan L, Lu Y, Xu Z. Some properties of fractional Ornstein-Uhlenbeck process. J Phys A Math Theor, 2008, 41(14):145007(17pp) [26] Yu Q. Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean for general Hurst parameter. Statist Papers, https://doi.org/10.1007/s00362-019-01113-y |