[1] Bloom J M. The Local Structure of Smooth Maps of Manifolds[B.A. thesis]. Cambrige, MA:Harvard University, 2004 [2] Bressan A, Chen G. Generic regularity of conservative solutions to a nonlinear wave equation. Ann Inst Henri Poincar'e-AN, 2017, 334:335-354 [3] Bressan A, Chen G. Lipschitz metric for a class of nonlinear wave equations. Arch Rat Mech Anal, 2017, 226:1303-1343 [4] Bressan A, Chen G, Zhang Q. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Disc Cont Dyn Syst A, 2015, 35:25-42 [5] Bressan A, Constantin A. Global conservative solutions to the Camassa-Holm equation. Arch Rat Mech Anal, 2007, 183:215-239 [6] Bressan A, Constantin A. Global dissipative solutions of the Camassa-Holm equation. Anal Appl, 2007, 5:1-27 [7] Bressan A, Fonte M. An optimal transportation metric for solutions of the Camassa-Holm equation. Methods Appl Anal, 2005, 12:191-220 [8] Bressan A, Holden H, Raynaud X. Lipschitz metric for the Hunter-Saxton equation. J Math Pures Appl, 2010, 94:68-92 [9] Cai H, Chen G, Chen R M, Shen Y N. Lipschitz Metric for the Novikov Equation. Arch Rat Mech Anal, 2018, 229:1091-1137 [10] Cai H, Chen G, Shen Y N. Lipschitz metric for conservative solutions of the two-component Camassa-Holm system. Z Angew Math Phys, 2017, 68:5 [11] Cai H, Tan Z. Lipschitz metric for conservative solutions of the modified two-component Camassa-Holm system. Z Angew Math Phys, 2018, 69:69-98 [12] Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71:1661-1664 [13] Cao C S, Holm D D, Titi E S. Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J Dynam Differential Equations, 2004, 16:167-178 [14] Constantin A. Existence of permanent and breaking waves for a shallow water equation:a geometric approach. Ann Inst Fourier (Grenoble), 2000, 50:321-362 [15] Constantin A, Escher J. On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math Z, 2000, 233:75-91 [16] Constantin A, Escher J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math, 1998, 181:229-243 [17] Constantin A, Escher J. Global existence and blow-up for a shallow water equation. Ann Scuola Norm Sup Pisa, 1998, 26:303-328 [18] Fuchssteiner B, Fokas A S. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D, 1981/1982, 4:47-66 [19] Gui G, Liu Y, Luo T. Model equations and traveling-wave solutions for shallow-water waves with the Coriolis effect. Journal of Nonlinear Science, 2019, 29:993-1039 [20] Gui G, Liu Y, Sun J. A nonlocal shallow-water model arising from the full water waves with the Coriolis effect. J Math Fluid Mech, 2019, 21:27 [21] Grunert K, Holden H, Raynaud X. Lipschitz metric for the periodic Camassa-Holm equation. J Differential Equations, 2011, 250:1460-1492 [22] Grunert K, Holden H, Raynaud X. Lipschitz metric for the Camassa-Holm equation on the line. Disc Cont Dyn Syst A, 2013, 33:2809-2827 [23] Golubitsky M, Guillemin V. Stable Mappings and Their Singularities. Graduate Texts in Mathematics, 14. New York:Springer-Verlag, 1973 [24] Holden H, Raynaud X. A convergent numerical scheme for the Camassa-Holm equation based on multipeakons. Disc Cont Dyn Syst A, 2006, 14:505-523 [25] Li M J, Zhang Q T. generic regularity of conservative solutions to Camassa-Holm type equations. SIAM J Math Anal, 2017, 49:2920-2949 [26] Jamróz G. On uniqueness of dissipative solutions of the Camassa-Holm equation. arXiv.1611.00333v5 [27] Li Y A, Olver P J. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J Geom Phys, 2000, 162:27-63 [28] Li Z G, Liu R. Blow-up solutions for a case of b-family equations. Acta Math Sci, 2020, 40B(4):910-920 [29] Zhou S M, Mu C L, Wang L C. Self-similar solutions and blow-up phenomena for a two-component shallow water system. Acta Math Sci, 2013, 33B(3):821-829 [30] Tu X Y, Liu Y, Mu C L. Existence and uniqueness of the global conservative weak solutions to the rotationCamassa-Holm equation. J Differential Equations, 2019, 266:4864-4900 [31] Villani C. Topics in Optmal Transportation. Providence RI:American Mathematical Society, 2003 |