[1] Chern S S, Wolfson J. Minimal surfaces by moving frames. Amer J Math, 1983, 105:59-83 [2] Boton J, Jensen G R, Rigoli M, et al. On conformal minimal immersions of S2 into CPn. Math Ann, 1988, 279:599-620 [3] Li Z Q. Counterexamples to the conjecture on minimal S2 in CPn with constant Kähler angle. Manuscripta Math, 1995, 88(1):417-431 [4] Wood L M. Minimal 2-spheres in CPn with constant Kähler angle. Manuscripta Math, 2000, 103(1):1-8 [5] Li X X, Li A M. Minimal surfaces in S6 with constant Kähler angles. Acta Math Sin (in Chinese), 1996, 39:196-203 [6] Li X X. A classification theorem for complete minimal surfaces in S6 with constant Kähler angles. Arch Math, 1999, 72:385-400 [7] Zhang Y. A note on conical Kähler-Ricci flow on minimal elliptic Kähler surface. Acta Math Sci, 2018, 38B(1):169-176 [8] Chong T, Dong Y, Lin H, et al. Rigidity theorems of complete Kähler-Einstein manifolds and complex space forms. Acta Math Sci, 2019, 39B(2):339-356 [9] Morvan J M. Classe de Maslov d'une immersion lagrangienne et minimalité. C R Acad Sci Paris, 1981292(13):633-636 [10] Cieliebak K, Goldstein E. A note on mean curvature, Maslov class and symplectic area of Lagrangian immersions. J Symplectic Geom, 2004, 2(2):261-266 [11] Schoen R, Wolfson J. Minimizing area among Lagrangian surfaces:the mapping problem. J Differential Geom, 2001, 58(1):1-86 [12] Arsie A. Maslov class and minimality in Calabi-Yau manifolds. J Geom Phys, 2000, 35:145-156 [13] Castro I, Lerma A M. The clifford torus as a self-shrinker for the Lagrangian mean curvature flow. Int Math Res Not, 2014, 6:1515-1527 [14] Lotay J D, Pacini T. From Lagrangian to totally real geometry:coupled flows and calibrations. Comm Anal Geom, 2018, in press [15] Chen J, Li J. Mean curvature flow of surface in 4-manifolds. Adv Math, 2001, 163(2):287-309 [16] Chen J, Tian G. Moving symplectic curves in Kähler-Einstein surfaces. Acta Math Sin, 2000, 16(4):541-548 [17] Arezzo C, Sun J. Self-shrinker for the mean curvature flow in arbitrary codimension. Math Z, 2013, 274:993-1027 [18] Han X, Sun J. Translating solitons to symplectic mean curvature flows. Ann Glob Anal Geom, 2010, 38:161-169 [19] Li H, Wang X F. New characterizations of the clifford torus as a Lagrangian self-shrinker. J Geom Anal, 2017, 27(2):1393-1412 [20] Chen J, Tian G. Minimal surfaces in Riemannian 4-manifolds. Geom Funct Anal, 1997, 7:873-916 [21] Colding T H, Minicozzi W P II. Generic mean curvature flow I:generic singularities. Ann Math, 2012, 175:755-833 [22] Cao H-D, Li H. A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension. Calc Var Partial Differential Equations, 2013, 46:879-889 [23] Li H, Wei Y. Classification and rigidity of self-shrinkers in the mean curvature flow. J Math Soc Japan, 2014, 66(3):709-734 [24] Gilbarg D, Trudinger N S. Elleptic Partial Differential Equations of Second Order. Berlin:Springer, 2001:32-36 |