[1] Morens D M, Folkers G K, Fauci A S. Emerging infections:A perpetual challenge. Lancet Infect Dis, 2008, 8(11):710-719 [2] Peiris J S M, Chu C M, Cheng V C C, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia:A prospective study. The Lancet, 2003, 361(9371):1767-1772 [3] Jin Z, Ma Z E, Han M A. Global stability of an SIRS epidemic model with delays. Acta Math Sci, 2006, 26B(2):291-306 [4] Kermack W O, Mckendrick A G. A contribution to the mathematical theory of epidemics. Proc R Soc A, 1927, 115:700-721 [5] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393:440-442 [6] Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439):509-512 [7] d'Onofrio A. A note on the global behavior of the network-based SIS epidemic model. Nonlinear Anal:Real World Appl, 2008, 9(4):1567-1572 [8] Moreno Y, Pastor-Satorras R, Vespignani A. Epidemic outbreaks in complex heterogeneous networks. Eur Phys J B, 2002, 26(4):521-529 [9] Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks. Phys Rev E, 2001, 63(6):066117 [10] Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks. Phys Rev E, 2002, 65(3):035108 [11] Wu Q C, Fu X C, Small M, Xu X J. The impact of awareness on epidemic spreading in networks. Chaos, 2012, 22:013101 [12] Keeling M. The implications of network structure for epidemic dynamics. Theor Popul Biol, 2005, 67(1):1-8 [13] Fu X C, Small M, Walker D M, Zhang H F. Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization. Phys Rev E, 2008, 77(3):036113 [14] Boguñá M, Castellano C, Pastor-Satorras R. Nature of the epidemic threshold for the susceptible-infectedsusceptible dynamics in networks. Phys Rev Lett, 2013, 111(6):068701 [15] Peng X L, Xu X J, Fu X C, Zhou T. Vaccination intervention on epidemic dynamics in networks. Phys Rev E, 2013, 87(2):022813 [16] Dharmaweera M N, Parthiban R, Sekercioglu Y A. Toward a power-efficient backbone network:The state of research. IEEE Commun Surv Tut, 2015, 17(1):198-227 [17] Vidal M, Cusick M E, Barabási A L. Interactome networks and human disease. Cell, 2011, 144(6):986-995 [18] Watts D J. A 21st century science. Nature, 2007, 445(7127):489 [19] Gómez S, Diaz-Guilera A, Gómez-Gardeñes J, et al. Diffusion dynamics on multiplex networks. Phys Rev Lett, 2013, 110(8):028701 [20] Solé-Ribalta A, De Domenico M, Kouvaris N E, et al. Spectral properties of the Laplacian of multiplex networks. Phys Rev E, 2013, 88(3):032807 [21] De Domenico M, Granell C, Porter M A, et al. The physics of spreading processes in multilayer networks. Nat Phys, 2016, 12:901-906 [22] Boccaletti S, Bianconi G, Criado R, et al. The structure and dynamics of multilayer networks. Phys Reps, 2014, 544(1):1-122 [23] Arbi A, Cherif F, Aouiti C, Touati A. Dynamics of new class of hopfield neural netwarks with time-varying and distributed delays. Acta Math Sci, 2016, 36B(3):891-912 [24] Granell C, Gómez S, Arenas A. Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys Rev Lett, 2013, 111(12):128701 [25] Saumell-Mendiola A, Serrano M A, Boguñá M. Epidemic spreading on interconnected networks. Phys Rev E, 2012, 86(2):026106 [26] Bonaccorsi S, Ottaviano S, Pellegrini F D, Socievole A, Mieghem P V. Epidemic outbreaks in two-scale community networks. Phys Rev E, 2014, 90(1):012810 [27] Son S W, Bizhani G, Christensen C, Grassberger P. Percolation theory on interdependent networks based on epidemic spreading. Europhys Lett, 2012, 97(1):16006 [28] Zhao D W, Li L X, Peng H P, Luo Q, Yang Y X. Multiple routes transmitted epidemics on multiplex networks. Phys Lett A, 2014, 378(10):770-776 [29] Wang Z, Andrews M A, Wu Z X, Wang L, Bauch C T. Coupled disease-behavior dynamics on complex networks:A review. Phys Life Rev, 2015, 15:1-29 [30] Khanafer A, Basar T, Gharesifard B. Stability of epidemic models over directed graphs:A positive systems approach. Automatica, 2016, 74:126-134 [31] Wang L N, Sun M F, Chen S S, Fu X C. Epidemic spreading on one-way-coupled networks. Phys A, 2016, 457:280-288 [32] Ogden N H, Bigras-Poulin M, O'Callaghan C J, et al. A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int J Parasitol, 2005, 35(4):375-389 [33] Wu X T, Duvvuri V R, Lou Y J, et al. Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada. J Theor Biol, 2013, 319:50-61 [34] Caraco T, Gardner G, Maniatty W, Deelman E, Szymanski B K. Lyme disease:Self-regulation and pathogen invasion. J Theor Biol, 1998, 193:561-575 [35] Lou Y J, Wu J H, Wu X T. Impact of biodiversity and seasonality on Lyme-pathogen transmission. Theor Biol Med Model, 2014, 11:50 [36] Lou Y J, Wu J H. Tick seeking assumptions and their implications for Lyme disease predictions. Ecol Compl, 2014, 17:99-106 [37] Wolfe N D, Dunavan C P, Diamond J. Origins of major human infectious diseases. Nature, 2007, 447:279-283 [38] Kieny M P, Lathe R, Drillien R, et al. Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature, 1984, 312:163-166 [39] Shi H J, Duan Z S, Chen G R. An SIS model with infective medium on complex networks. Phys A, 2008, 387(8/9):2133-2144 [40] Wang Y, Jin Z, Yang Z M, et al. Global analysis of an SIS model with infective vector on complex networks. Nonlinear Anal:Real World Appl, 2011, 13(2):543-557 [41] Xia C Y, Wang L, Sun S W, Wang J. An SIR model with infection delay and propagation vector in complex networks. Nonlinear Dyn, 2012, 69(3):927-934 [42] Zhu G H, Chen G R, Zhang H F, Fu X C. Propagation dynamics of an epidemic model with infective media connecting two separated networks of populations. Commun Nonlinear Sci Numer Simul, 2012, 69(3):2588-2594 [43] Driessche P van den, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180(1/2):29-48 [44] Zhao X Q, Jing Z J. Global asymptotic behavior in some cooperative systems of functional differential equations. Can Appl Math Q, 1996, 4(4):421-444 [45] Yorke J A. Invariance for ordinary differential equations. Theory Comput Syst, 1967, 1(4):353-372 [46] Lajmanovich A, Yorke J A. A deterministic model for gonorrhea in a nonhomogeneous population. Math Biosci, 1976, 28(3/4):221-236 [47] Newman M E J. The structure and function of complex networks. SIAM Rev, 2003, 45(2):167-256 |