[1] Axler S, Bourdon P, Ramey W. Harmonic Function Theory. Graduate Texts in Mathematics. 2nd ed. New York:Springer-Verlag, 2001 [2] Duren P. Harmonic Mappings in the Plane. Cambridge Tracts in Mathematics, Vol 137. New York:SpringerVerlag, 1992 [3] Bshouty D, Hengartner W. Univalent harmonic mappings in the plane. Ann Univ Mariae Curie-Sklodowska Sect A, 1994, 48:12-42 [4] Chen H, Gauthier P M, Hengartner W. Bloch constants for planar harmonic mappings. Proc Amer Math Soc, 2000, 128:3231-3240 [5] Chen H. The Schwarz-Pick lemma for planar harmonic mappings. Sci China Math, 2011, 54:1101-1118 [6] Heinz E. On one-to-one harmonic mappings. Pacific J Math, 1959, 9:101-105 [7] Chen H. The Schwarz-Pick lemma and Julia lemma for real planar harmonic mappings. Sci China Math, 2013, 56:2327-2334 [8] Kalaj D. Harmonic Functions and Harmonic Quasiconformal Mappings Between Convex Domains[D]. Beograd, 2002 [9] Knežević M, Mateljević M. On the quasi-isometries of harmonic quasiconformal mappings. J Math Anal Appl, 2007, 334:404-413 [10] Pavlović M. A Schwarz lemma for the modulus of a vector-valued analiytic function. Proc Amer Math Soc, 2011, 139:969-973 [11] Kalaj D, Vuorinen M. On harmonic functions and the Schwarz lemma. Proc Amer Math Soc, 2012, 140:161-165 [12] Liu Y, Chen Z, Pan Y. A boundary Schwarz lemma for holomorphic mappings on the polydisc. Chin Ann Math, Series B, 2018, 39(1):9-16 [13] Liu Y, Chen Z, Pan Y. Boundary Schwarz lemma for nonequidimensional holomorphic mappings and its application. Pacific J Math, 2018, 295(2):463-476 [14] Liu Y, Dai S, Pan Y. Boundary Schwarz lemma for pluriharmonic mappings between unit balls. J Math Anal Appl, 2016, 433(1):487-495 [15] Chen S, Ponnusamy S, Rasila A, Wang X. Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar harmonic mapping. Acta Math Sin (English Series), 2017, 32(3):297-308 |