[1] Brodzki J, Niblo G A. Approximation properties for discrete groups//C*-algebras and Elliptic Theory. Basel:Birkhäuser, 2006:23-35 [2] Bo·zejko M. Positive and negative definite kernels on groups. Heidelberg Lectures Notes, 1987 [3] Dales H G, Lau A T-M. The second duals of Beurling algebras. Memoirs of the American Mathematical Society, 2005, 177(836):191 [4] Daws M, Spronk N. On convoluters on Lp-spaces. Studia Mathematica, 2018 [5] Figà-Talamanca A, Picardello M A. Harmonic Analysis on Free Groups. New York:Marcel Dekker Inc, 1983 [6] Forrest B, Kaniuth E, Lau A T, et al. Ideals with bounded approximate identities in Fourier algebras. Journal of Functional Analysis, 2003, 203(1):286-304 [7] Guimei An, Jung-Jin Lee, Zhong-Jin Ruan. On p-approximation properties for p-operator spaces. Journal of Functional Analysis, 2010, 259(4):933-974 [8] Haagerup U. An example of a non-nuclear C*-algebra which has the metric approximation property. Inventiones Mathematicae, 1979, 50(3):279-293 [9] Haagerup U, Kraus J. Approximation properties for group C*-algebras and group von Neumann algebras. Transactions of the American Mathematical Society, 1994, 344(2):667-699 [10] Herz C. The theory of p-spaces with an application to convolution operators. Transactions of the American Mathematical Society, 1971, 154(FEB):69-82 [11] Lee H H, Samei E. Beurling-Fourier algebras, operator amenability and Arens regularity. Journal of Functional Analysis, 2010, 262(1):167-209 [12] Leptin H. Sur lálgèbre de Fourier dún groupe localement compact. C R Acad Sci Paris Sér A-B, 1968:1180-1182 [13] Miao T. Predual of the multiplier algebra of Ap(G) and amenability. Canadian Journal of Mathematics, 2004, 56(2):344-355 [14] Miao T. Approximation properties and approximate identities of Ap(G). Transactions of the American Mathematical Society, 2009, 361(3):1581-1595 [15] Öztop S, Runde V, Spronk N. Beurling-figà-talamanca-herz algebras. Studia Mathematica, 2012, 210(2):117-135 [16] Pisier G, Xu Q. Non-commutative Lp-spaces//Handbook of the Geometry of Banach Spaces, Vol 2. Amsterdam:Elsevier, 2003:1459-1517 [17] Yan C, Bekjan T. Toeplitz operators associated with semifinite von Neumann algebra. Acta Mathematica Scientia, 2015, 35B(1):182-188 [18] Yan C. The Hankel operators and noncommutative BMO spaces. Annals of Functional Analysis, 2016, 7(3):402-410 [19] Xu Q. Non-commutative Lp-spaces. Preprint [20] Han Y, Bekjan T. The dual of noncommutative Lorentz spaces. Acta Mathematica Scientia, 2011, 31B(5):2067-2080 |