[1] Athreya K B, Karlin S. On branching processes in random environments. I:Extinction probabilities. Ann Math Statist, 1971, 42:1499-1520 [2] Athreya K B, Karlin S. On branching processes in random environments. II:Limit theorems. Ann Math Statist, 1971, 42:1843-1858 [3] Athreya K B, Ney P E. Branching Processes. Berlin:Springer, 1972 [4] Alsmeyer G, Rösler U. On the existence of φ-moments of the limit of a normalized supercritical GaltonWatson process. J Theor Probab, 2004, 17:905-928 [5] Alsmeyer G, Kuhlbusch D. Double martingale structure and existence of φ-moments for weighted branching processes. Münster J Math, 2010, 3:163-212 [6] Barral J. Generalized vector multiplicative cascades. Adv Appl Prob, 2001, 33:874-895 [7] Biggins J D. Martingale convergence in the branching random walk. J Appl Prob, 1977, 14(1):25-37 [8] Biggins J D. Uniform convergence of martingale in the branching random walk. Ann Prob, 1992, 20(1):137-151 [9] Biggins J D, Kyprianou A E. Measure change in multitype branching. Adv Appl Prob, 2004, 36(2):544-581 [10] Bingham N H, Doney R A. Asymptotic properties of supercritical branching processes. I:The GaltonWatson process. Adv Appl Prob, 1974, 6:711-731 [11] Bingham N H, Doney R A. Asymptotic properties of supercritical branching processes. II:Crump-Mode and Jirina process. Adv Appl Prob, 1975, 7:66-82 [12] Bingham K H, Goldie C M, Teugels J L. Regular Variation. Cambridge:Cambridge Univ Press, 1987 [13] Chen X, He H. On large deviation probabilities for empirical distribution of branching random walks:Schröder case and Böttcher case. 2017 [14] Chow Y S, Teicher H. Probability Theory:Independence, Interchangeability, Martingales. New York:Springer, 1995 [15] Grintsevichyus A K. On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines. Theory Prob Appl, 1974, 19:163-168 [16] Guivarc'h Y, Liu Q. Proprietes asympotiques des processus de branchement en environnement aleatoire. C R Acad Sci Paris, Ser I. 2001, 332:339-344 [17] Huang C. Limit Theorems and the Convergence Rate of Some Branching Processes and Branching Random Walk[D]. Universite de Bretagne-Sud (France), 2010 [18] Huang C, Liu Q. Convergence in Lp and its exponential rate for a branching process in a random environment. Electron J Prob, 2014, 104(19):1-22 [19] Hu Y, Shi Z. Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann Prob, 2009, 37:742-789 [20] Kuhlbusch D. On weighted branching process in random environment. Stoch Prob Appl, 2004, 109(1):113-144 [21] Li Y, Liu Q. Age-dependent Branching processes in random environments. Sci China Ser A, 2008, 51(10):1807-1830 [22] Liang X. Asymptotic Properties of the Mandelbrot's Martingale and the Branching Random Walks[D]. Universite de Bretagne-Sud (France), 2010 [23] Liang X, Liu Q. Weighted moments for the limit of a normalized supercritical Galton-Watson process. C R Acad Sci Paris, Ser I, 2013, 351:769-773 [24] Liang X, Liu Q. Weighted moments of the limit of a branching process in a random environment. Proc Steklov Inst Math, 2013, 282:127-145 [25] Liang X, Liu Q. Weighted moments for Mandelbrot's martingales. Electron Commun Probab, 2015, 20(85):1-12 [26] Liu Q. On generalized multiplicascades. Stoc Proc Appl, 2000, 86:263-286 [27] Liu Q. Branching random walks in random environment//Ji L, Liu K, Yang L, Yau S T, eds. Proceedings of the 4th International Congress of Chinese Mathematicians (ICCM 2007), Vol II. 2007:702-219 [28] Gao Z, Liu Q. Exact convergence rates in central limit theorems for a branching random walk with a random environment in time. Stoch Proc Appl, 2016, 126:2634-2664 [29] Gao Z, Liu Q, Wang H. Central limit theorems for a branching random walk with a random environment in time. Acta Mathematica Scientia, 2014, 34B(2):501-512 [30] Mandelbrot B. Multiplications aléatoires et distributions invaricantes par moyenne pondérée aléatoire. C R Acad Sci Pairs, 1974, 287:289-292, 355-358 [31] Shi Z. Branching Random Walks. Ecole d'Été de Probabilités de Saint-Flour XLII-2012. Lecture Notes in Mathematics, Vol 2151. Berlin:Springer, 2015 [32] Wang Y, Li Y, Liu Q, Liu Z. Quenched weighted moments of a supercritical branching process in a random environment. Published in Asian Journal of Mathematics, 2019 |