数学物理学报(英文版) ›› 2018, Vol. 38 ›› Issue (6): 1767-1778.

• 论文 • 上一篇    下一篇

EXISTENCE OF SOLUTIONS FOR GRADIENT SYSTEMS WITH APPLICATION TO DIFFUSION PROBLEMS INVOLVING NONCONVEX ENERGIES

Sahbi BOUSSANDEL   

  1. Département de Mathématiques, Faculté des Sciences de Bizerte, 7021 Jarzouna Bizerte-Laboratoire EDP et Applications LR03 ES04, Tunisia
  • 收稿日期:2017-08-10 修回日期:2017-12-18 出版日期:2018-12-25 发布日期:2018-12-28
  • 作者简介:Sahbi BOUSSANDEL,E-mail:sahbi.boussandel@yahoo.fr

EXISTENCE OF SOLUTIONS FOR GRADIENT SYSTEMS WITH APPLICATION TO DIFFUSION PROBLEMS INVOLVING NONCONVEX ENERGIES

Sahbi BOUSSANDEL   

  1. Département de Mathématiques, Faculté des Sciences de Bizerte, 7021 Jarzouna Bizerte-Laboratoire EDP et Applications LR03 ES04, Tunisia
  • Received:2017-08-10 Revised:2017-12-18 Online:2018-12-25 Published:2018-12-28

摘要: In this paper, we establish the existence of solutions for gradient systems of evolution under some type (M) and semi-coerciveness conditions. The main result is applied in order to solve nonlinear diffusion equations involving nonconvex energies.

关键词: gradient systems, existence of solutions, Galerkin method, type (M) condition, semi-coerciveness, diffusion equations

Abstract: In this paper, we establish the existence of solutions for gradient systems of evolution under some type (M) and semi-coerciveness conditions. The main result is applied in order to solve nonlinear diffusion equations involving nonconvex energies.

Key words: gradient systems, existence of solutions, Galerkin method, type (M) condition, semi-coerciveness, diffusion equations