[1] Alikakos N, Bates P W, Chen X. Periodic traveling waves and locating oscillating patterns in multidimensional domains. Trans Amer Math Soc, 1999, 351: 2777-2805
[2] Zhao G Y. Multidimensional periodic traveling waves in infinite cylinders. Discrete Contnu Dyn Syst, 2009, 24: 1025-1045
[3] Aronson D G, Weinberger H F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation//Goldstein J A, ed. Partial differential Equations and Related Topics. Lecture Notes in Math, 446. Springer, 1975: 5-49
[4] Aronson D G, Weinberger H F. Multidimensional nonlinear diffusions arising in population genetics. Adv Math, 1978, 30: 33-76
[5] Berestycki H, Nirenberg L. Traveling fronts in cylinders. Ann Inst H Poincaré Anal Non Linéaire, 1992, 9: 497-572
[6] Berestycki H, Hamel F. Front propagation in periodic excitable media. Comm Pure Appl Math, 2002, 55949-1032
[7] Hamel F. Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity. J Math Pures Appl, 2008, 89: 355-399
[8] Nadin G. Traveling fronts in space-time periodic media. J Math Pures Appl, 2009, 92: 232-262
[9] Berestycki H, Hamel F, Matano H. Bistable travelling waves around an obstacle. Comm Pure Appl Math, 2009, 62: 729-788
[10] Berestycki H, Rossi L. Reaction-diffusion equations for population dynamics with forced speed I-The case of the whole space. Discrete Contin Dyn Syst, 2008, 21: 41-67
[11] Berestycki H, Rossi L. Reaction-diffusion equations for population dynamics with forced speed II-cylindricaltype domains. Discrete Contin Dyn Syst, 2009, 25: 19-61
[12] Hamel F, Roques L. Uniqueness and stability properties of monostable pulsating fronts. J Eur Math Soc, 2011, 13: 345-390
[13] Vega J M. Travelling wavefronts of reaction-diffusion equations in cylindrical domains. Comm Partial Differential Equations, 1993, 18: 505-531
[14] Vega, J M. The asymptotic behavior of the solutions of some semilinear elliptic equations in cylindrical domains. J Differential Equations, 1993, 102: 119-152
[15] Hamel F, Nadirashvili N. Entire solutions of the KPP equation. Comm Pure Appl Math, 1999, 52: 1255-1276
[16] Hamel F, Nadirashvili N. Traveling fronts and entire solutions of the Fisher-KPP equation in RN. Arch Ration Mech Anal, 2001, 157: 91-163
[17] Chen X, Guo J S. Existence and uniqueness of entire solutions for a reaction-diffusion equation. J Differential Equations, 2005, 212: 62-84
[18] Li W T, Liu N W, Wang Z C. Entire solutions in reaction-advection-diffusion equations in cylinders. J Math Pures Appl, 2008, 90: 492-504
[19] Li W T, Liu N W, Wang Z C. Entire solutions of reaction-advection-diffusion equations with bistable nonlinearity in cylinders. J Differential Equations, 2009, 246: 4249-4267
[20] Li W T, Liu N W, Wang Z C. Pulsating type entire solutions of monostable reaction-advection-diffusion equations in periodic excitable media. Nonlinear Anal, 2012, 75: 1869-1880
[21] Liu N W, Li W T. Entire solutions in reaction-advection-diffusion equations with bistable nonlinearities in heterogeneous media. Sci China Math, 2010, 53: 1775-1786
[22] Sheng W J, Cao M L. Entire solutions of the Fisher-KPP equation in time periodic media. Dyn Partial Differ Equ, 2012, 9: 133-145
[23] Sheng W J, Liu N W. Entire solutions in monostable reaction-advection-diffusion equations in infinite cylinders. Nonlinear Anal, 2011, 74: 3540-3547
[24] Sheng W J, Li W T, Wang Z C. Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation. Sci China Math, 2013, 56: 1969-1982
[25] Sheng W J. Time periodic traveling curved fronts of bistable reaction-diffusion equations in RN. Appl Math Lett, 2016, 54: 22-30
[26] Wei D, Wu J Y, Mei M. Remark on critical speed of traveling wavefronts for Nicholson's blowflies equation with diffusion. Acta Math Sci, 2010, 30B(5): 1561-1566
[27] Cao W T, Huang F M. On the convergence rate of a class of reaction hyperbolic systems for axonal transport. Acta Math Sci, 2015, 35B(4): 945-954
[28] Jiang M N, Xiang J L. Asymptotic stability of traveling waves for a dissipative nonlinear evolution system. Acta Math Sci, 2015, 35B(6): 1325-1338
[29] Volpert A I, Volpert V A, Volpert V A. Traveling Wave Solutions of Parabolic Systems. Transl Math Monogr, Vol 140. Providence: Amer Math Soc, 1994
[30] Fife P C, McLeod J B. The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch Ration Mech Anal, 1977, 65: 335-361
[31] Chen X. Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv Differential Equations, 1997, 2: 125-160
[32] Shen W. Traveling waves in time almost periodic structures governed by bistable nonlinearities, I: Stability and uniqueness. J Differential Equations, 1999, 159: 1-54
[33] Bates P W, Chen F. Periodic traveling waves for a non-local integro-differential model. Electronic J Differential Equations, 1999, 26: 1-19
[34] Berestycki H, Larrouturou B, Roquejoffre J M. Stability of travelling fronts in a model for flame propagation. part I: linear analysis. Arch Ration Mech Anal, 1992, 117: 97-117
[35] Roquejoffre J M. Stability of travelling fronts in a model for flame propagation, part Ⅱ: nonlinear stability. Arch Ration Mech Anal, 1992, 117: 119-153
[36] Roquejoffre J M. Convergence to travelling waves for solutions of a class of semilinear parabolic equations. J Differential Equations, 1994, 108: 262-295
[37] Roquejoffre J M. Eventual monotonicity and convergence to travelling fronts for the solutions of semilinear parabolic equations in cylinders. Ann Inst H Poincaré Anal Non Linéaire, 1997, 14: 499-552
[38] Lunardi A. Analytic Semigroups and Optimal Regularity in Parabolic Problems. Boston: Birkhäuser, 1995
[39] Wang Z C, Wu J. Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity. J Differential Equations, 2011, 250: 3196-3229
[40] Sheng W J, Li W T, Wang Z C. Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity. J Differential Equations, 2012, 252: 2388-2424 |