[1] |
Armijo L. Minimization of functions having Lipschits continuous partial derivatives. Pacific J Math, 1966, 16:1-3
|
[2] |
Aubin T. Nonlinear Analysis on Manifolds, Monge-Ampère Equations. Berlin:Springer-Verlag, 1982
|
[3] |
Benamou J D, Brenier Y. The Monge-Kantorovich mass transfer and its computational fluid mechanics formulation. Int J Numer Meth Fluids, 2002
|
[4] |
Benamou J-D, Frose B D, Oberman A M. Two numerical methods for the elliptic Monge-Ampere equation. ESSAIM:M2AN, 2010, 44:737-758
|
[5] |
Bokanowski O, Grébert B. Deformations of density functions in molecular quantum chemistry. J Math Phys, 1996, 37(4):1553-1573
|
[6] |
Böhmer K. On finite element methods for fully nonlinear elliptic equations of second order. SIAM J Numer Anal, 2008, 46(3):1212-1249
|
[7] |
Brenier Y. Some geometric PDEs related to hydrodynamics and electrodynamics//Proceedings of the International Congress of Mathematicians, Beijing 2002, August 20-28, Vol Ⅲ. Beijing:Higher Eduction Press, 2002:761-771
|
[8] |
Cabré X. Topics in regularity and qualitatives properties of solutions of non linear elliptic equations. Discrete Contin Dyn Syst, 2002, 8:331-359
|
[9] |
Caffarelli L. Non linear elliptic theory and the Monge-Ampère equation//Proceedings of the International Congress of Mathematicians, Beijing 2002, August 20-28, Vol I. Beijing:Higher Eduction Press, 2002:179-187
|
[10] |
Caffarelli L, Cabré X. Fully Nonlinear Elliptic Equations. Providence, RI:American Mathematical Society, 1995
|
[11] |
Caffarelli L, Kochengin S A, Oliker V I. On the Numerical solution of the problem of reflector design with given far-field scattering data. Contemporary Mathematics, 1999, 226:13-32
|
[12] |
Caffarelli L, Li Y Y. A liouville theorem for solutions of the Monge-Ampère equation with periodic data. Ann Inst H Poincarè Anal Non Linéaire, 2004, 21:97-120
|
[13] |
Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second-order elliptic equation I. Monge-Ampère equation. Comm Pure Appl Math, 1984, 17:396-402
|
[14] |
Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for the degenerate Monge-Ampère equation. Rev Mat Ibero, 1985, 2:19-27
|
[15] |
Chang S-Y A, Yang P C. Nonlinear partial differential equations in conformal geometry//Proceedings of the International Congress of Mathematicians, Beijing 2002, August 20-28, Vol I. Beijing:Higher Eduction Press, 2002:189-207
|
[16] |
Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam:North-Holland, 1978
|
[17] |
Courant R, Hilbert D. Methods of Mathematical Physics. Vol Ⅱ. New York:Wiley, 1962
|
[18] |
Cullen M J P, Douglas R J. Applications of the Monge-Ampère equation and Monge transport problem to metorology and oceanog-raphy. Contemporary Mathematics, 1999, 226:33-53
|
[19] |
Dean E J, Glowinski R. Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions:an augmented Lagrangian approach. C R Acad Sci Paris, Ser I, 2003, 336:779-784
|
[20] |
Dean E J, Glowinski R. Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions:a least-squares approach. C R Acad Sci Paris, Ser I, 2004, 339:887-892
|
[21] |
Dean E J, Glowinski R. Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput Methods Appl Mech Engrg, 2006, 195(13/16):1344-1386
|
[22] |
Dean E J, Glowinski R. On the numerical solution of the elliptic Monge-Ampère equation in dimension two:a least-squares approach//Partial Differential Equations. Volume 16 of Comput Methods Appl Sci, Dordrecht:Springer, 2008:43-63
|
[23] |
Feng X, Neilan M. Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations. J Scient Comp, 2009, 38(1):74-98
|
[24] |
Goldstein A A. On steepest descent. SIAM J Control, 1965, 3:147-151
|
[25] |
Haltiner G J. Numerical Weather Prediction. New York:Wiley, 1971
|
[26] |
Kochengin S A, Oliker V L. Determination of reflector surfaces from near-filed scattering data. Inverse Problems, 1997, 13(2):363-373
|
[27] |
Le Dimet F X, Ouberdous M. Retrieval of balanced fields:an optimal control method. Tellus, 1993, 45A:449-461
|
[28] |
Lions P L. Une méthode nouvelle pour l'existense de solutions réulière de l'équation de Monge-Ampère réelle. C R Acad Sc Paris, Serie I, 1981, 293(30):589-592
|
[29] |
Michael Neilan. A nonconforming Moreley finite element method for the fully nonlineair Monge-Ampere equation. Numer Math, 2010, 115:371-394
|
[30] |
Newman E, Oliker V I. Differential-geometric methods in the design of reflector antennas. Sympos Math, 1992, 35:205-223
|
[31] |
Newman, Pamela Cook L. A generalized Monge-Ampère equation arising in compressible flow. Contemporary Mathematics, 1999, 226:149-156
|
[32] |
Oberman A M. Wide stencil finite difference schemes for elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discr Cont Dynam Sys B, 2008, 10(1):221-238
|
[33] |
Oliker V. On the linearized Monge-Ampère equations related to the boundary value Minkowski problem and its generalizations//Gherardelli F, ed. Monge-Ampère Equations and Related Topics. Proceedings of a Seminar Help in Firenze, 1980. Roma, 1980:79-112
|
[34] |
Oliker V I, Prussner L D. On the numerical solution of th equation zxzy-zxy2=f and its discretization. Numer Math, 1988, 54:271-293
|
[35] |
Oliker V, Waltman P. Radilly symmetric solutions of a Monge-Ampère eqaution arising in a reflector mapping problem. Lecture Notes in Mathematics 1285. Springer, 1987
|
[36] |
Polak E, Ribiè G. Note sur la convergence de directions conjuguées. Rev Francaise Infomat Recherche Operationnelle, 3e Année, 1969, 16:35-43
|
[37] |
Polyak B T. The conjugate gradient method in extreme problems. USSR Comput Math Math Phys, 1969, 9:94-112
|
[38] |
Wolfe P. Convergence conditions for ascent methods. SIAM Rev, 1969, 11:226-235
|
[39] |
Zheligovsky V, Podvigina O, Frish U. The Monge-Ampère equation:Various forms and numerical solution. J Comput Phys, 2010, 229(13):5043-5061
|