[1] Ambrosetti A, Struwe M. Existence of steady vortex rings in an ideal fluid. Arch Rational Mech Anal, 1989, 108:97-109 [2] Amick C J, Fraenkel L E. The uniqueness of a family of steady vortex rings. Arch Rational Mech Anal, 1988, 100:207-241 [3] Amick C J, Turner R E L. A global branch of steady vortex rings. J Reine Angew Math, 1988, 384:1-23 [4] Arnold V I, Khesin B A. Topological Methods in Hydrodynamics. Applied Mathematical Sciences, Vol 125. New York:Springer, 1998 [5] Badiani T V. Existence of steady symmetric vortex pairs on a planar domain with an obstacle. Math Proc Cambridge Philos Soc, 1998, 123:365-384 [6] Bartsch T, Pistoia A, Weth T. N-vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-Poisson and the Lane-Emden-Fowler equations. Comm Math Phys, 2010, 297:653-686 [7] Berger M S, Fraenkel L E. Nonlinear desingularization in certain free-boundary problems. Comm Math Phys, 1980, 77:149-172 [8] Burton G R. Vortex rings in a cylinder and rearrangements. J Diff Equ, 1987, 70:333-348 [9] Burton G R. Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex. Acta Math, 1989, 163:291-309 [10] Caffarelli L, Friedman A. Asymptotic estimates for the plasma problem. Duke Math J, 1980, 47:705-742 [11] Cao D, Liu Z, Wei J. Regularization of point vortices for the Euler equation in dimension two. Arch Ration Mech Anal, 2014, 212:179-217 [12] Cao D, Peng S, Yan S. Multiplicity of solutions for the plasma problem in two dimensions. Adv Math, 2010, 225:2741-2785 [13] Cao D, Peng S, Yan S. Planar vortex patch problem in incompressible steady flow. Adv Math, 2015, 270:263-301 [14] Chang K C. The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm Pure Appl Math, 1980, 33:117-146 [15] Chang K C. Variational methods for nondifferentiable functionals and their applications to partial differential equations. J Math Anal Appl, 1981, 80:102-129 [16] Dancer E N, Yan S. The Lazer-McKenna conjecture and a free boundary problem in two dimensions. J London Math Soc, 2008, 78:639-662 [17] Fraenkel L E, Berger M S. A global theory of steady vortex rings in an ideal fluid. Acta Math, 1974, 132:13-51 [18] Fraenkel L E, Berger M S. A global theory of steady vortex rings in an ideal fluid. Bull Amer Math Soc, 1973, 79:806-810 [19] Flucher M, Wei J. Asymptotic shape and location of small cores in elliptic free-boundary problems. Math Z, 1998, 228:683-703 [20] Friedman A, Turkington B. Vortex rings:existence and asymptotic estimates. Trans Amer Math Soc, 1981, 268:1-37 [21] Li G, Yan S, Yang J. An elliptic problem related to planar vortex pairs. SIAM J Math Anal, 2005, 36:1444-1460 [22] Li Y, Peng S. Multiple solutions for an elliptic problem related to vortex pairs. J Diff Equ, 2011, 250:3448-3472 [23] Lin C. C. On the motion of vortices in two dimension-I. Existence of the Kirchhoff-Routh function. Proc Nat Acad Sci, 1941, 27:570-575 [24] Marchioro C, Pulvirenti M. Euler evolution for singular initial data and vortex theory. Comm Math Phys, 1983, 91:563-572 [25] Ni W-M. On the existence of global vortex rings. J Anal Math, 1980, 37:208-247 [26] Norbury J. Steady planar vortex pairs in an ideal fluid. Comm Pure Appl Math, 1975, 28:679-700 [27] Norbury J. A steady vortex ring close to Hill's spherical vortex. Proc Cambridge Philos Soc, 1972, 72:253-284 [28] Smets D, Van Schaftingen J. Desingulariation of vortices for the Euler equation. Arch Rational Mech Anal, 2010, 198:869-925 [29] Turkington B. On steady vortex flow in two dimensions, I. Comm Partial Diff Eqt, 1983, 8:999-1030 [30] Turkington B. On steady vortex flow in two dimensions, Ⅱ. Comm Partial Diff Equ, 1983, 8:1031-1071 [31] Yang J. Existence and asymptotic behavior in planar vortex theory. Math Models Methods Appl Sci, 1991, 1:461-475 |