[1] Balla K, M\"arz R. A unified approach to linear differential algebraic equations and their adjoint equations. Z Anal Anwend, 2002, 21: 783--802
[2] Balla K, M\"arz R. Linear boundary value problems for differential algebraic equations. Miskolc Math Notes, 2004, 5: 3--18
[3] Gear C W, Petzold L R. ODE methods for the solution of differential/algebraic systems. SIAM J Numer Anal, 1984, 21: 716--728
[4] Hanke H, M\"arz R, Neubauer A. On the regularization of a class of nontransferable differential-algebraic equations. J Differ Equations, 1988, 73: 119--132
[5] Higueras I, März R. Differential algebraic equations with properly stated leading terms. Comput Math Appl, 2004, 48: 215--235
[6] Higueras I, M\"arz R, Tischendorf C. Stability preserving integration of index-1DAEs. Appl Numer Math, 2003, 45: 175--200
[7] Higueras I, M\"arz R, Tischendorf C. Stability preserving integration of index-2 DAEs. Appl Numer Math, 2003, 45: 201--229
[8] Koch O, März R, Praetorius D, Weinm\"{u}ller E. Collocation methods for index 1 DAEs with a singularity of the first kind. Math Comp, 2010, 79(269): 281--304
[9] Lamour R. Index determination and calculation of consistent initial values. Comput Math Appl, 2005, 50: 1125--1140
[10] Lamour R, Mazzia F. Computation of consistent initial values for properly stated index 3 DAEs. BIT Numer Math, 2009, 49: 161--175
[11] März R. The index of linear differential algebraic equations with properly stated leading terms. Result Math, 2002, 42: 308--338
[12] März R. Differential algebraic equations anew. Appl Numer Math, 2002, 42: 315--335
[13] März R. Solvability of linear differential algebraic equations with properly stated leading terms. Result Math, 2004, 45: 88--105
[14] März R. Fine decouplings of regular differential algebraic equations. Result Math, 2004, 46: 57--72
[15] März R. Characterizing differential algebraic equations without the use of derivative arrays. Comput Math Appl, 2005, 50: 1141--1156
[16] März R, Riaza R. Linear differential-algebraic equations with properly stated leading term: regular points. J Math Anal Appl, 2006,
323: 1279--1299
\REF{17} M\"arz R, Riaza R. Linear differential-algebraic equations with properly stated-leading term: A-critical points. Math Comput Model Dyn Syst, 2007, 13: 291--314
[18] März R, Riaza R. Linear differential-algebraic equations with properly stated-leading term: B-critical points. Dyn Syst, 2008, 23: 505--522
[19] O'Malley R E. Singular Perturbation Methods for Ordinary Differential Equations. Applied Mathematical Sciences 89. New York: Springer-Verlag, 1991
[20] Riaza R. Differential-Algebraic Systems: Analytical Aspects and Circuit Applications. World Scientific, 2008
[21] Riaza R, März R. A simpler construction of the matrix chain defining the tractability index of linear DAEs. Appl Math Lett, 2008, 21:
326--331
[22] Schulz S. Four lectures on differential-algebraic equations//Tech Report 497. New Zealand: The University of Auckland, 2003
[23] Soto M S, Tischendorf C. Numerical analysis of DAEs from coupled circuit and semiconductor simulation. Appl Numer Math, 2005, 53: 471--488
[24] Song Y. Solvability of higher index time-varying linear differential-algebraic equations. Acta Mathematica Scientia, 2001, 21(B): 77--92
|