[1] Filippov V. n-Lie algebras. Sib Mat Zh, 1985, 26: 126–140
[2] Bagger J, Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev, 2008, D77: 065008
[3] Ho P, Hou R, Matsuo Y. Lie 3-algebra and multiple M2-branes. JHEP, 2008, 0806: 020
[4] Ho P, Chebotar M, Ke W. On skew-symmetric maps on Lie algebras. Proc Royal Soc Edinburgh A, 2003, 113: 1273–1281
[5] Gustavsson A. Algebraic structures on parallel M2-branes. Nucl Phys, 2009, B811: 66–76
[6] Papadopoulos G. M2-branes, 3-Lie algebras and Plucker relations. JHEP, 2008, 0805: 054
[7] Kasymov S. On a theory of n-Lie algebras. Algebra i Logika, 1987, 26: 277–297
[8] Ling W. On the structure of n-Lie algebras. Dissertation. Siegn: University-GHS-Siegen, 1993
[9] Pojidaev A. Enveloping algebras of Filippov algebras. Comm Algebra, 2003, 31(2): 883–900
[10] Pozhidaev A. Solvability of finite-dimensional n-ary commutative Leibniz algebras of characteristic 0. Comm
Algebra, 2003, 31(1): 197–215
[11] Jin Y, Liu W, Zhang Z. Real simple n-lie algebras admitting metric structures. J Phys A: Math Theor, 2009, 42: 9
[12] Bai R, Shen S, Zhang Y. 3-Lie algebras with an ideal N. Linear Alg Appl, 2009, 431: 673–700
[13] Bai R, Bai C, Wang J. Realizations of 3-Lie algebras. J Math Phys, 2010, 51: 063505
[14] Bai R, Song G, Zhang Y. On classification of n-Lie algebras. Front Math Chin, 2011, 6(4): 581–606
[15] Michaelis W. Lie coalgebra. Adv Math, 1980, 38: 1–54
[16] Bolavin A, Drinfeld V. Solutions of the classical Yang- Baxter equation for simple Lie algebras. Func Anal Appl, 1982, 16: 159–180
[17] DeSmedt V. Existence of a Lie bialgebra structure on every Lie algebra. Lett Math Phys, 1994, 31: 225–231 |