[1] Loday J L. Une version non commutative des algebres de Lie: Les algebres de Leibniz. Enseign Math, 1993, 3: 269–293
[2] Ibanez R, Leon M, Marrero J, et al. Leibniz algebroid associated with a Nambu-Poisson structure. J Phys A, 1999, 32: 8129–8144
[3] Kinyon M K, Weinstein A. Leibniz algebras, Courant algebroids, and multiplications on reductive homo-geneous spaces. Amer J Math, 2001, 123: 525–550
[4] Bagger J, Lambert N. Modeling multiple M2’s. Phys Rev D, 2007, 75: 045020
[5] Casas, J M, Loday J L, Pirashvili T. Leibniz n-algebras. Forum Math, 2002, 14: 189–207
[6] Gustavsson A. Algebraic structures on parallel M2-branes. Nucl Phys B, 2009, 811: 66–76
[7] Bagger J, Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev D, 2008, 77: 065008
[8] Hagiwara Y, Mizutani T. Leibniz algebras associated with foliations. Kodai Math J, 2002, 25: 151–165
[9] Casas J, Insua M, Ladra M. Poincare-Birkhoff-Witt theorem for Leibniz n-algebras. J Symbolic Comput, 2007, 42: 1052–1065
[10] Albeverio S, Ayupov S, Omirov B, et al. Cartan Subalgebras of Leibniz n-Algebras. Comm Alg, 2009, 37(6): 2080–2096
[11] Casas J, Khmaladze E, Ladra M. On Solvability and Nilpotency of Leibniz n-Algebras. Comm Alg, 2006, 34(8): 2769–2780
[12] Bai R, Wang X. Classifications of low dimensional 3-Lie algebras. Acta Math Sci, 2010, 30A(1): 86–96
[13] Bai R, Jia P. The real compact n-Lie algebras and invariant bilinear forms. Acta Math Sci, 2007, 27A(6): 1074–1081 |