[1] Jacobson N. Lie and Jordan triple systems. Amer J Math, 1949, 71: 149–170
[2] Okubo S. Triple products and Yang-Baxter equation and symplectic ternary system. J Math Phys, 1993, 34: 3273–3292
[3] Okubo S. Parastatistics as Lie supertriple systems. J Math Phys, 1994, 35: 2785–2803
[4] Okubo S, Kamiya N. Quasi-classical Lie superalgebras and Lie supertriple systems. Comm Algebra, 2002, 30: 3825–3850
[5] Okubo S, Kamiya N. Jordan-Lie superalgebra and Jordan-Lie triple system. J Algebra, 1997, 198: 383–411
[6] Listr G. A structure theory of Lie triple systems. Trans Amer Math Soc, 1952, 72: 217–242
[7] Hodge T. Lie triple systems, restricted Lie triple systems, and algebraic groups. J Algebra, 2001, 244: 533–580
[8] Kallen W. Infinitesimally central extensions of chevalley groups. Lect Notes Math. Berlin: Springer, 356, 1973
[9] Milnor J. Introduction to algebraic K-theory. Princeton: Princeton Univ Press, 1971
[10] Garland H. The arithmetic theory of Loop groups. Publ I H E S, 1980, 52: 5–136
[11] Gao Y. Steinberg Lie algebras and skew-dihedral homology. J Algebra, 1996, 179: 261–304
[12] Iohara K, Koga Y. Central extensions of Lie superalgebras. Comment Math Helv, 2001, 76: 110–154
[13] Li W, Wilson R. Central extensions of some Lie algebras. Amer Math Soc, 1998, 126: 2569–2577
[14] Mikhalev A, Pinchuk I. Universal central extensions of the matrix Lie superalgebras sl(m, n;A). Combina-torial and computational algebra (Hong Kong, 1999). Amer Math Soc, Providence, RI, 2000: 111–125
[15] Duff A. Derivations, invariant forms and central extensions of orthosymplectic Lie superalgebras [Ph. D.
dissertation]. University of Ottawa, Department of Mathematics and Statistics, 2002
[16] Neher E. An introduction to universal central extensions of Lie superalgebras//Groups, Rings and Hopf Algebras. Kluwer Academic, 2003: 141–166
[17] Scheunert M, Zhang R. Cohomology of Lie superalgebras and their generalizations. J Math Phys, 1998, 39: 5024–5061
[18] Zhang Q, Zhang Y. Derivations and extensions of Lie color algebra. Acta Math Sci, 2008, 28B: 933–948
[19] Zhang Z, Shi Y, Zhao L. Invariant symmetric bilinear forms on Lie triple systems. Comm Algebra, 2002, 30: 5563–5573
[20] Calder´on Mart´?n A J, Mart´?n Gonz´alez C. Hilbert space methods in the theory of Lie triple systems. Recent
progress in functional analysis, Valencia, 2000, 309–319, North-Holland Math. Stud, 189, North-Holland, Amsterdam, 2001
[21] Calder´on Mart´?n A J. Coherent direct systems of L-triples. Algebras Groups Geom, 2002, 1: 1–17 |