[1] Baranov A D. Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings. J Func Anal, 2005, 223(1): 116–146
[2] Bernstein S N. Sur l’ordre de la meilleure approximation des fonctions continues pardes polynomials de degr´e donn´e. M´em Cl Sci Acad Roy Belg, 1912, 4(2): 1–104
[3] Borwein P B. Markov’s inequality for polynomials with real zeros. Proc Amer Math Soc, 1985, 93: 43–48
[4] Borwein P B, Erd´elyi T. Sharp Markov-Bernstein type inequalities for classes of polynomials with restricted zeros. Constr Approx, 1994, 10: 411–425
[5] Borwein P B, Erd´elyi T. Polynomials and Polynomial Inequalities. Springer-Verlag, 1995
[6] Borwein P B, Erd´elyi T. Markov-and Bernstein-type inequalities for polynomials with restricted coefficients. The Ramanujan Journal, 1997, 1: 309–323
[7] DeVore R A, Lorentz G G. Constructive Approximation Theory. Berlin: Springer-Verlag, 1993
[8] Ditzian Z. Multivariate Bernstein and Markov inequalities. J Approx Theory, 1992, 70: 273–283
[9] Ditzian Z, Tikhonov S. Ul’yanov and Nikol’skii-type inequalities. J Approx Theory, 2005, 133: 100–133
[10] Erd´elyi T. Markov-Nikolskii type inequalities for exponential sums on finite intervals. Adv Math, 2007, 208: 135–146
[11] Erdélyi T. Markov-type inequalities for products of M¨untz polynomials. J Approx Theory, 2001, 112: 171–188
[12] Jung H S, Sakai R, Inequalities with exponential weights. J Comput Applied Math, 2008, 212(2): 359–373
[13] Levin E, Lubinsky D. Orthogonal polynomials for exponential weights x2ρe −2Q(x) on [0, d), II. J Approx Theory, 2006, 139: 107–143
[14] Lorentz G G. Approximation of Function. 2nd ed. New York: Chelsea, 1986
[15] Natanson I P. Constructive Function Theory. New York: Ungar, 1964
[16] Nikol’skiÏ S M. Inequalities for entire functions of finite degree and their applications to several variables. Trudy Math Ist Steklov, 1951, 38: 244–278; Amer Math Soc Trans Ser, 1969, 2: 1–38
[17] Pesenson I. Bernstein-Nikol’skiÏ inequalities and Riesz interpolation formula on compact homogeneous manifolds. J Approx Theory, 2008, 150(2): 175–198
[18] Riesz F. Sur les polynˆomes trigonom´etriques. C R Acad Sci Paris, 1914, 158: 1657–1661
[19] Zygmund A. Trigonometric Series. Cambridge: Cambridge University Press, 1959 |