数学物理学报(英文版) ›› 2009, Vol. 29 ›› Issue (5): 1143-1154.doi: 10.1016/S0252-9602(09)60092-8

• 论文 • 上一篇    下一篇

BRUNN-MINKOWSKI INEQUALITY FOR VARIATIONAL FUNCTIONAL INVOLVING THE  P-LAPLACIAN OPERATOR

 胡华香, 周树清   

  1. Department of Mathematics, Hunan Normal University, hangsha |410081, China
  • 收稿日期:2008-05-25 修回日期:2009-03-30 出版日期:2009-09-20 发布日期:2009-09-20
  • 通讯作者: Zhou Shuqing E-mail:hunanhhx@163.com; zhoushuqing87@163.com

BRUNN-MINKOWSKI INEQUALITY FOR VARIATIONAL FUNCTIONAL INVOLVING THE  P-LAPLACIAN OPERATOR

 HU Hua-Xiang, ZHOU Shu-Qing   

  1. Department of Mathematics, Hunan Normal University, hangsha |410081, China
  • Received:2008-05-25 Revised:2009-03-30 Online:2009-09-20 Published:2009-09-20
  • Contact: Zhou Shuqing E-mail:hunanhhx@163.com; zhoushuqing87@163.com
  • Supported by:

    The Project supported by Natural Science Foundation f China (10671064), Scientific Research Fund of Hunan
    Provincial Education Department (06C516) and Excellent Youth rogramm of Hunan Normal University (080640)

摘要:

In this paper, we investigate the following elliptic problem involving the P-Laplacian
 (P) {

  -Div(| u|p-2    u) =|u|q-1u  in  K,
  u>0                                    in  K,
  u=0                                    on  ∂K,

where p>1, 0K     Rn with K ∈ Kn , and prove that the energy integral of the problem (P) satisfies a Brunn-Minkowski type inequality.

关键词: PLaplacian, energy integral, runn Minkowski type inequlity

Abstract:

In this paper, we investigate the following elliptic problem involving the P-Laplacian
 (P) {

  -Div(| u|p-2    u) =|u|q-1u  in  K,
  u>0                                    in  K,
  u=0                                    on  ∂K,

where p>1, 0K     Rn with K ∈ Kn , and prove that the energy integral of the problem (P) satisfies a Brunn-Minkowski type inequality.

中图分类号: 

  • 35J20