[1] Gal S G. Approximation by Complex Bernstein and Convolution Type Operators. Singapore, Hong Kong, London, New Jersey: World Scientific Publ Co, 2009
[2] Gal S G. Approximation and geometric properties of complex Favard-Sz´asz-Mirakjan operators in compact disks. Comput Math Appl, 2008, 56: 1121–1127
[3] Gal S G. Approximation by complex Bernstein-Durrmeyer polynomials with Jacobi weights in compact disks. Mathematica Balkanica (NS), 2010, 24(1/2): 103–119
[4] Gal S G. Approximation by complex genuine Durrmeyer type polynomials in compact disks. Appl Math Comput, 2010, 217: 1913–1920
[5] Gal S G. Approximation of analytic functions without exponential growth conditions by complex Favard-Sz´asz-Mirakjan operators. Rendiconti del Circolo Matematico di Palermo, 2010, 59(3): 367–376
[6] Gal S G, Gupta V. Approximation by a Durrmeyer-type operator in compact disks. Annali dell´Universita di Ferrara, 2011, 57(2): 261–274
[7] Gal S G, Gupta V. Quantitative estimates for a new complex Durrmeyer operator in compact disks. Appl Math Comput, 2011, 218(6): 2944–2951
[8] Gal S G, Gupta V, Mahmudov N I. Approximation by a complex q-Durrmeyer type operator. Ann Univ Ferrara Sez VII Sci Mat, 2012, 58(1): 65–87
[9] Gupta V, Verma D K. Approximation by complex Favard-Sz´asz-Mirakjan-Stancu operators in compact disks. Math Sci, 2012, 6(25): Doi:10.1186/2251-7456-6-25
[10] Lorentz G G. Bernstein Polynomials. 2nd ed. New York: Chelsea Publ, 1986
[11] Mazhar S M, Totik V. Approximation by modified Sz´asz operators. Acta Sci Math, 1985, 49: 257–269 |