[1] Aubin T. Non-linear Analysis on Manifolds. New York: Springer, 1982
[2] Bakry D, Émery M. Diffusions hypercontractives. Séminaire de Probabilités, XIX, 1983/1984, 1985, 1123: 177--206
[3] Calabi E. An extension of E. Hopf's maximum principle with application to Riemannian geometry. Duke J Math, 1957, 25:45--46
[4] Cheng S Y, Yau S T. Differential equations on Riemannian manifolds and their geomtric applications. Comm Pure Apple Math, 1975, 28: 333--354
[5] Lott J. Some geometric properties of the Bakry-Emery-Ricci tensor. Comment Math Helv, 2003, 78(4): 865--833
[6] Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann Math, 2009, 169(3): 903--991
[7] Perelman G Y. Ricci flow with surgery on three manifilds. arXiv:math/0303109, 2003
[8] Petersen P, Wylie W. Rigidity of gradient Ricci soliton. Pacific J Math, 2009, 24(1): 329--345
[9] Sturm K T. On the geometry of metric measure spaces I. Acta Math, 2006, 196(1): 65--131
[10] Sturm K T. On the geometry of metric measure spaces II. Acta Math, 2006, 196(1): 133--177
[11] Wei G F, Wylie W. Comparison geometry for the Bakry-Emery Ricci tensor. J Diff Geom, 2009, 83(2): 337--405
[12] Yau S T, Schoen R. Lectures on Differential Geometry. Boston: International Press, 1994
[13] Zhong T D, Zhong C P. Bochner technique in real Finsler Manifolds. Acta Math Sci, 2003, 23(2): 165--177
|