[1] Afanas'eva N V, Tedeev A F. Fujita-type theorems for quasilinear parabolic equations in the case of slowly decaying initial data. Mat Sb, 2004, 195:3-22(in Russian); Translation in Sb Math 2004, 195:459-478
[2] Deng K, Levine H A. The role of critical exponents in blow-up theorems:the sequel. J Math Anal Appl, 2000, 243:85-126
[3] Fujita H. On the blowing up of solutions of the Cauchy problem for ut=Δu+uα+1. J Fac Sci Univ Tokyo Sec A, 1966, 16:105-113
[4] Galaktionov V A. Blow-up for quasilinear heat equations with critical Fujita's exponents. Proc Roy Soc Edinburgh Sect A, 1994, 124:517-525
[5] Gui C, Wang X. Life span of solutions of the Cauchy problem for a semi-linear heat equation. J Differential Equations, 1995, 115:166-172
[6] Guo J S, Guo Y J. On a fast diffusion equation with source. Tohoku Math J, 2001, 53:571-579
[7] Guo W, Wang Z J, Du R M, Wen L S. Critical Fujita exponents for a class of nonlinear convection-diffusion equations. Math Meth Appl Sci, 2011, 34:839-849
[8] Huang Q, Mochizuki K, Mukai K. Life span and asymptotic behavior for a semilinear parabolic system with slowly decaying initial values. Hokkaido Math J, 1998, 27:393-407
[9] Kobayashi Y. The life span of blow-up solution for a weakly coupled system of reaction-diffusion. Tokyo J Math, 2001, 24:487-498
[10] Kobayashi Y. The behavior of the life span for solutions to the system of reaction-diffusion equations. Hiroshima Math J, 2003, 33:167-187
[11] Lee T Y, Ni W M. Global existence, large time behavior and life span on solutions of a semilinear Cauchy problem. Trans Amer Math Soc, 1992, 333:365-378
[12] Li Y H, Mu C L. Life span and a new critical exponent for a degenerate parabolic equation. J Differential Equations, 2004, 207:392-406
[13] Li Z P, Du W J. Life span and secondary critical exponent for degenerate and singular parabolic equations. Annali di Matematica, 2014, 193:501-515
[14] Liang Z L. Critical exponents for the evolution p-Laplacian equation with a localized reaction. Indian J Pure Appl Math, 2012, 43:535-558
[15] Liu C C. Critical exponent for a quasilinear parabolic equation with inhomogeneous density in a cone. Monatsh Math, 2012, 165:237-249
[16] Liu X F, Wang M X. The critical exponent of doubly singular parabolic equations. J Math Anal Appl, 2001, 257:170-188
[17] Mi Y S, Mu C L, Zeng R. Secondary critical exponent, large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values. Z Angew Math Phys, 2011, 62:961-978
[18] Mochizuki K, Mukai K. Existence and nonexistence of global solutions to fast diffusions with source. Methods Appl Anal, 1995, 2:92-102
[19] Mu C L, Li Y H, Wang Y. Life span and a new critical exponent for a quasilinear degenerate parabolic equation with slow decay initial values. Nonlinear Anal RWA, 2010, 11:198-206
[20] Mu C L, Zeng R, Zhou S M. Life span and a new critical exponent for a doubly degenerate parabolic equation with slow decay initial values. J Math Anal Appl, 2011, 384:181-191
[21] Mukai K, Mochizuki K, Huang Q. Large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values. Nonlinear Anal, 2000, 39:33-45
[22] Pinsky R G. The behavior of the life span for solution to ut=αu+a(x)up in Rd. J Differential Equations, 1998, 147:30-57
[23] Qi Y W. The critical exponents of degenerate parabolic equations. Sci China Ser A, 1994, 38:1153-1162
[24] Qi Y W. The critical exponents of parabolic equations and blow-up in RN. Proc Roy Soc Edinburgh Sect A, 1998, 128:123-136
[25] Qi Y W, Wang M X. Critical exponents of quasilinear parabolic equations. J Math Anal Appl, 2002, 267:264-280
[26] Wang L S, Yin J X, Wang Z J. Large time behavior of solutions to Newtonian filtration equations with sources. Acta Math Scientia, 2010, 30B:968-974
[27] Wang Z J, Yin J X, Wang L S. Critical exponent for non-Newtonian filtration equation with homogeneous Neumann boundary data. Math Meth Appl Sci, 2008, 31:975-985
[28] Winkler M. A critical exponent in a degenerate parabolic equation. Math Meth Appl Sci, 2002, 25:911-925
[29] Yang J G, Yang C X, Zheng S N. Second critical exponent for evolution p-Laplacian equation with weighted source. Math Comput Modelling, 2012, 56:247-256
[30] Yin J X, Jin C H, Yang Y. Critical exponents of evolutionary p-laplacian with interior and boundary sources. Acta Math Scientia, 2011, 31B:778-790
[31] Zhao J N. The asymptotic behavior of solutions of a quasilinear degenerate parabolic equation. J Differential Equations, 1993, 102:33-52
[32] Zhao J N. The Cauchy problem for ut=div(|∇u|p-2∇u) when 2n/(n+1)< p< 2. Nonlinear Anal TMA, 1995, 24:615-630
[33] Zhao J N. On the Cauchy problem and initial traces for the evolution p-Laplacian equation with strongly nonlinear sources. J Differential Equations, 1995, 121:329-383
[34] Zheng P, Mu C L. Global existence, large time behavior and life span for a degenerate parabolic equation with inhomogeneous density and source. Z Angew Math Phys, 2014, 65:471-486
[35] Zheng P, Mu C L, Liu D M, Yao X Z, Zhou S M. Blow-up analysis for a quasilinear degenerate parabolic equation with strongly nonlinear source. Abstr Appl Anal, 2012, 2012:1-19 |