[1] Ahmad Z U. Mursaleen K¨othe-Toeplitz duals of some new sequence spaces and their matrix maps. Publ Inst Math (Beograd), 1987, 42: 57–61
[2] Akhmedov A M, El-Shabrawy S R. On the fine spectrum of the operator a,b over the sequence space c.Comput Math Appl, 2011, 61(10): 2994–3002
[3] Altay B, Ba¸sar F. On the paranormed Riesz sequence spaces of non-absolute type. Southeast Asian Bull Math, 2002, 26(5): 701–715
[4] Altay B, Ba¸sar F. Some paranormed sequence spaces of non-absolute type derived by weighted mean. J Math Anal Appl, 2006, 319(2): 494–508
[5] Altay B, Ba¸sar F. Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space. J Math Anal Appl, 2007, 336(1): 632–645
[6] Ayd?n C, Ba¸sar F. Some new paranormed sequence spaces. Inform Sci, 2004, 160: 27–40
[7] Ayd?n C, Altay B. Domain of generalized difference matrix B(r, s) on some Maddox’s spaces. Thai J Math, 2013, 11(1): 87–102
[8] Ba¸sar F. Summability Theory and Its Applications. Bentham Science Publishers, e-books. Monographs, Ístanbul-2012, ISBN: 978-1-60805-420-6
[9] Ba¸sar F, Altay B, Mursaleen M. Some generalizations of the space bvp of p-bounded variation sequences. Nonlinear Anal, 2008, 68(2): 273–287
[10] Ba¸sar F, C¸ akmak A F. Domain of triple band matrix B(r, s, t) on some Maddox´s spaces. Ann Funct Anal, 2012, 3(1): 32–48
[11] Djolovi´c I. On compact operators on some spaces related to matrix B(r, s). Filomat, 2010, 24(2): 41–51
[12] Jarrah A M, Malkowsky E. BK spaces, bases and linear operators. Rendiconti Circ Mat Palermo II, 1990, 52: 177–191
[13] Jarrah A M, Malkowsky E. The space bv(p), its β−dual and matrix transformations. Collect Math, 2004, 55(2): 151–162
[14] Grosse-Erdmann K-G. Matrix transformations between the sequence spaces of Maddox. J Math Anal Appl, 1993, 180: 223–238
[15] K?zmaz H. On certain sequence spaces. Canad Math Bull, 1981, 24(2): 169–176
[16] Kiri¸s¸ci M, Ba¸sar F. Some new sequence spaces derived by the domain of generalized difference matrix. Comput Math Appl, 2010, 60(5): 1299–1309
[17] Lorentz G G. A contribution to the theory of divergent sequences. Acta Math, 1948, 80: 167–190
[18] Maddox I J. Spaces of strongly summable sequences. Quart J Math Oxford, 1967, 18(2): 345–355
[19] Maddox I J. Paranormed sequence spaces generated by infinite matrices. Proc Camb Phil Soc, 1968, 64: 335–340
[20] Maddox I J. Some properties of paranormed sequence spaces. London J Math Soc, 1969, 1(2): 316–322
[21] Malkowsky E. Recent results in the theory of matrix transformations in sequence spaces. Mat Vesnik, 1997, 49: 187–196
[22] Malkowsky E, Mursaleen M. Some matrix transformations between the difference sequence spaces c0(p),c(p) and ?1(p). Filomat, 2001, 15: 353–363
[23] Nanda S. Infinite matrices and almost convergence. J Indian Math Soc, 1976, 40: 173–184
[24] ¨Ozger F, Ba¸sar F. Domain of the double sequential band matrix B(er, es) on some Maddox´s spaces. AIP
Conference Proceedings, 2012, 1470: 152–155
[25] Panigrahi B L, Srivastava P D. Spectrum and fine spectrum of generalized second order difference operator
2uv on sequence space c0. Thai J Math, 2011, 9(1): 57–74
[26] Simons S. The sequence spaces ?(pv) and m(pv). Proc London Math Soc, 1965, 15(3): 422–436
[27] Srivastava P D, Kumar S. Fine spectrum of the generalized difference operator on sequence space ?1.Thai J Math, 2010, 8(2): 7–19
[28] Srivastava P D, Kumar S. Fine spectrum of the generalized difference operator uv on sequence space l1.Appl Math Comput, 2012, 218(11): 6407–6414 |