[1] Wei X, Ghosh S K, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature, 1995, 373: 117–122
[2] Nowak M A, Bonhoeffer S, et al. Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci USA, 1996, 93: 4398–4402
[3] Beasley R P, Hwang L Y, et al. Hepatocellular carcinoma and hepatitis B virus. Lancet, 1981, 2: 1129–1133
[4] Weissberg J I, Andres L L, et al. Survival in chronic hepatitis B: an analysis of 379 patients. Ann Intern Med, 1984, 101: 613–616
[5] Ferrari C, Penna A, et al. Cellular immune response to hepatitis B virus encoded antigens in a cute and chronic hepatitis B virus infection. J Immunol, 1990, 145: 3442–3449
[6] Regenstein F. New approaches to the treatment of chronic viral-hepatitis-B and viral-hepatitis C. Am J Med, 1994, 96: 47–51
[7] Nowak M A, Bangham C R M. Population dynamics of immune response to persistent viruses. Science, 1996, 272: 74–79
[8] Wang K F, Wang W D. Propagation of HBV with spatial dependence. Math Biosci, 2007, 210: 78–95
[9] Gourley S A, So J W H. Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain. J Math Biol, 2002, 44: 49–78
[10] Seeger C, Mason W S. Hepatitis B virus biology. Microbiol Mol Biol Rev, 2007, 64: 51–68
[11] Wang K F, Wang W D, Song S P. Dynamics of an HBV model with diffusion and delay. J Theor Biol, 2008, 253: 36–44
[12] Xu R, Ma Z E. An HBV model with diffusion and time delay. J Theor Biol, 2009, 257: 499-509
[13] Wang X, Song X Y. Global stability and periodic solution of a model for HIV infection of CD4+ T cells. Appl Math Comput, 2007, 189: 1331–1340
[14] Redlinger R. Existence theorem for semilinear parabolic systems with functionals. Nonlinear Anal, 1984, 8: 667–682
[15] Korobeinikov A, Maini P K. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math Biosci Eng, 2004, 1: 57–60
[16] Pao C V. Global asymptotic stability of Lotka-Volterra competition systems with diffusion and time delays. Nonlinear Anal Real World Appl, 2004, 5: 91–104
[17] Li J Q, Ma Z E, Zhou Y C. Global analysis of SIS epidemic model with a simple vaccination and multiple endemic equilibria. Acta Mathematica Scientia, 2006, 26B(1): 83–93
[18] Jin Z, Ma Z E, Han M A. Global stability of an SIRS epidemic model with delays. Acta Mathematica Scientia, 2006, 26B(2): 291–306 |