[1] Brenier Y. Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm Partial Differential Equations, 2000, 25(3/4): 737–754
[2] Degond P. Mathematical modelling of microelectronics semiconductor devices//Some Current Topics on Nonlinear Conservation Laws. Volume 15 of AMS/IP Stud Adv Math, Providence, RI: Amer Math Soc, 2000: 77–110
[3] Donatelli D, Marcati P. A quasineutral type limit for the Navier Stokes Poisson system with large data. Nonlinearity, 2008, 21(1): 135–148
[4] Hao C H, Li H L. Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions. J Differential Equations, 2009, 246(12): 4791–4812
[5] Hsiao L, Li H L. Compressible Navier-Stokes-Poisson equations. Acta Math Sci, 2010, 30B(6): 1937–1948
[6] Ju Q C, Li F C, Wang S. Convergence of Navier-Stokes-Poisson system to the incompressible Navier-Stokes equations. J Math Phys, 2008, 49(7): 073515, 8pp
[7] Ju Q C, Li Y, Wang S. Rate of convergence from the Navier-Stokes-Poisson system to the incompressible Euler equations. J Math Phys, 2009, 50(1): 013533, 12pp
[8] Li H L, Matsumura A, Zhang G. Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3. Arch Rat Mech Anal, 2010, 196(2): 681–713
[9] Li H L, Yang T, Zou C. Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system. Acta Math Sci, 2009, 29B(6): 1721–1736
[10] Wang S. Quasineutral limit of Euler-Poisson system with and without viscosity. Comm Partial Differential Equations, 2004, 29(3/4): 419–456
[11] Wang S, Jiang S. The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equa-tions. Comm Partial Differential Equations, 2006, 31(4-6): 571–591
|