[1] Alexandre R, Desvillettes L, Villani C, Wennberg B. Entropy dissipation and long-range interactions. Arch
Rational Mech Anal, 2000, 152: 327–355
[2] Alexandre R, Safadi M. Littlewood Paley decomposition and regularity issues in Boltzmann equation
homogeneous equations, I: Non-cutoff case and Maxwellian molecules. Math Models Methods Appl Sci,
2005, 15(6): 907–920
[3] Alexandre R, Ukai S, Morimoto Y, Xu C -J, Yang T. Uncertainty principle and regularity for Boltzmann
equation. To appear in Journal of Functional Analysis
[4] Chen H, Li W -X, Xu C -J. The Gevrey Hypoellipticity for linear and non-linear Fokker-Planck equations.
Journal of Differential Equations, 2009, 246: 320–339
[5] Chen H, Rodino L. General theory of PDE and Gevrey class. General theory of partial differential equations
and microlocal analysis (Trieste 1995). Pitman Res Notes in Math Ser, 349. Harlow: Longman, 1996: 6–81
[6] Chen Y -M. Desvillettes L, He L -B. Smoothing effects for classic solutions of the full Landau equation.
To appear in Arch Rational Mech Anal
[7] Derridj M, Zuily C. Sur la r′egularit′e Gevrey des op′erateurs de H¨ormander. J Math Pures et Appl, 1973,
52: 309–336
[8] Desvillettes L. On asymptotics of the Boltzmann equation when the collisions become grazing. Transp Th
Stat Phys, 1992, 21(3): 259–276
[9] Desvillettes L, Furioli G, Terraneo E. Propagation of Gevrey regularity for solutions of the Boltzmann
equation for Maxwellian molecules. Preprint
[10] Desvillettes L, Wennberg B. Smoothness of the solution of the spatially homogeneous Boltzmann equation
without cutoff. Comm Partial Differential Equations, 2004, 29(1/2): 133–155
[11] Desvillettes L, Villani C. On the Spartially Homogeneous Landau Equation for Hard Potentials, Part I:
Existence, Uniqueness and Smoothness. Comm Partial Differential Equations, 2000, 25(1/2): 179–259
[12] Durand M. R′egularit′e Gevrey d’une classe d’op′erateurs hypo-elliptiques. J Math Pures et Appl, 1978, 57:
323–360
[13] Guo Y. The Landau equation in a periodic box. Comm Math Phys, 2002, 231(3): 391–434
[14] Morimoto Y, Xu C -J. Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely
degenerate elliptic operators. Ast′erisque, 2003, 284: 245–264
[15] Morimoto Y, Ukai S, Xu C -J, Yang T. Regularity of solutions to the spatially homogeneous Boltzmann
equation without Angular cutoff. Preprint
[16] Rodino L. Linear Partial Differential Operators in Gevrey Class. Singapore: World Scientific, 1993
[17] Ukai S. Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff. Japan J
Appl Math, 1984, 1(1): 141–156
[18] Villani C. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations.
Arch Rational Mech Anal, 1998, 143: 273–307
[19] Villani C. On the spatially homogeneous Landau equations for Maxwellian molecules. Math Models
Methods Appl Sci, 1998, 8(6): 957–983
|