[1] Acerbi E, Fusco N. Partial regularity under anisotropic (p, q) growth conditions. J Diff Equ, 1994, 107(1): 46--67
[2] Adams R A. Sobolev spaces. New York-San Francisco-London: Academic Press, 1975
[3] Bildhauer M, Fuchs M. Two-dimensional anisotropic variational problems. Calc Variations, 2003, 16: 177--186
[4] Bildhauer M, Fuchs M. On the regularity of local minimizers of decomposable variational integrals on domains in R2. Comment Math Univ Carolin, 2007, 48(2): 321--341
[5] Bildhauer M, Fuchs M. Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals. Manus Math, 2007, 123: 269--283
[6] Bildhauer M, Fuchs M, Zhong X. A regularity theory for scalar local minimizers of splitting-type variational integrals. Ann Scuola Norm Sup Pisa Cl Sci, 2007, 4(5): 385--404
[7] D'Ottavio A, Leonetti F, Musciano C. Maximum principle for vector valued mappings minimizing variational integrals. Atti Sem Mat Fis Uni Modena, 1998, 66: 677--683
[8] Esposito L, Leonetti F, Mingione G. Higher integrability for minimizers of integral functionals with (p, q)-growth. J Diff Eq, 1999, 157: 414--438
[9] Esposito L, Leonetti F, Mingione G. Regularity for minimizers of functionals with p-q growth. Nonlinear Diff Equ Appl, 1999, 6: 133--148
[10] Fusco N, Sbordone C. Some remarks on the regularity of minima of anisotropic integrals. Comm P D E, 1993, 18: 153--167
[11] Giaquinta M. Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann Math Studies 105. Princeton: Princeton University Press, 1983
[12] Giaquinta M. Growth conditions and regularity, a counterexample. Manus Math, 1987, 59: 245--248
[13] Marcellini P. Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch Rat Mech Anal, 1989, 105: 267--284
[14] Marcellini P. Everywhere regularity for a class of elliptic systems without growth conditions. Ann Scuola Norm Sup Pisa, 1996, 23: 1--25
[15] Morrey C B. Multiple integrals in the calculus of variations. Grundlehren der math. Wiss in Einzeldarstellungen 130. Berlin-Heidelberg-New York: Springer, 1966 |