[1] Arcoya D, Boccardo L. Critical points for multiple integral of the calculus of variations. Arch Rational Mech Anal, 1996, 134: 249--274
[2] Bartsch T, Li Shujie. Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear Anal, 1997, 28(3): 4l9--441
[3] Bensoussan A, Boccardo L, Murat F. On a nonlinear partial differential equation having natural growth and unbounded solutions. Ann Inst H Poincarè Anal Non Linèaire, 1988, 5: 347--364
[4] Canino A. Multiplicity of solutions for quasi-linear elliptic equations. Top Meth Nonlin Anal, 1995, 6: 357--370
[5] Canino A, Degiovanni M. Non-smooth critical point theory and quasi-linear elliptic equations//Granras A, Frigon M, Sabidussi G, eds.
Topological Methods in Differential Equations and Inclusions. NATO ASJ Series-Kluwer A P, 1995: 1--50
[6] Cao D M, Yan S S. Infinitely many solutions for an elliptic problem involving critical nonlinearity. Acta Math Sci, 2010, 30B(6): 2017--2032
[7] Corvellec J N. Nontrivial solutions of quasi-linear equations via non-smooth Morse theory. J Differ Equa, 1997, 136: 268--293
[8] Corvellec J N. Morse Theory for continuous functionals. J Math Anal Appl, 1995, 196: 1050--1072
[9] Degiovanni M, Marzocchi M. A critical point theory for non-smooth functionals. Ann Mat Pura Appl, 1994, 167(4): 73--100
[10] Evans L C. Partial Differential Equations. Providence RI: American Mathematical Society, 1998
[11] Guo Y X, Liu J Q. Solutions of p-sublinear p-Laplacian equation via Morse theory. J London Math Soc, 2005, 72(2): 632--644
[12] Moroz V. Solutions of super-linear at zero elliptic equations via Morse theory. Top Meth Nonlin Anal, 1997, 10: 387--397
[13] Palais R. Morse theory on Hilbert manifolds. Topology, 1963, 2: 299--340
[14] MacLane S J R. Elements of Algebraic Topology. Reading, Ma: Addison-Wesley, Perseus, 1993
[15] Shen Y T, Guo X K. Applications of the three critical points theorem in quasilinear elliptic equations. Acta Math Sci, 1985, 5(3): 279--288
[16] Smale S. Morse theory and a nonlinear generalization of the Dirichlet problem. Ann Math, 1964, 80: 382--396
[17] Spanier E H. Algebraic Topology. New York: McGraw-Hill Book Co, 1966
[18] Squalsina M. Existence of weak solutions to general Euler's equations via non-smooth critical point theory. Ann Fac Sci Toulouse Math, 2000, 9(6): 113--131 |