[1] Ball K. Volume ratios and a reverse isoperimetric inequality. J London Math Soc, 1991, 44: 351-359 [2] Ball K. Ellipsoids of maximal volume in convex bodies. Geom Dedicata, 1992, 41: 241-250 [3] Böröczky K, Lutwak E, Yang D, Zhang G. Affine images of isotropic measures. J Differential Geom, 2015, 99: 407-442 [4] Bourgain J. On high-dimensional maximal functions associated to convex bodies. Amer J Math, 1986, 108: 1467-1476 [5] Giannopoulos A, Papadimitrakis M. Isotropic surface area measures. Mathematika, 1999, 46: 1-13 [6] Gardner R. Geometric Tomography. Cambridge: Cambridge University Press, 2006 [7] Gruber P. Convex and Discrete Geometry. Berlin: Springer, 2007 [8] Gruber P. John and Loewner ellipsoids. Discrete Comput Geom, 2011, 46: 776-788 [9] Hu J, Xiong G. The logarithmic John ellipsoid. Geom Dedicata, 2018, 197: 33-48 [10] John F. Extremum problems with inequalities as subsidiary conditions// Studies and Essays Presented to R. Courant on his 60th Birthday. New York: Interscience Publishers, 1948: 187-204 [11] Klartag B. On John-type ellipsoids// Milman V, Schechtman G. Geometric Aspects of Functional Analysis. Berlin: Springer, 2004: 149-158 [12] Leichtweiss K. Affine Geometry of Convex Bodies. Heidelberg: Johann Ambrosius Barth Verlag, 1998 [13] Lewis D. Ellipsoids defined by Banach ideal norms. Mathematika, 1979, 26: 18-29 [14] Lindenstrauss J, Milman V. The local theory of normed spaces and its applications to convexity// Gruber P, Wills J. Handbook of Convex Geometry. Amsterdam: North-Holland, 1993: 1149-1220 [15] Lu X, Xiong G. The  John ellipsoids for negative indices. Israel J Math, 2023, 255: 155-176 [16] Ludwig M. Ellipsoids and matrix-valued valuations. Duke Math J, 2003, 119: 159-188 [17] Lutwak E, Yang D, Zhang G. A new ellipsoid associated with convex bodies. Duke Math J, 2000, 104: 375-390 [18] Lutwak E, Yang D, Zhang G. A new affine invariant for polytopes and Schneider's projection problem. Trans Amer Math Soc, 2001, 353: 1767-1779 [19] Lutwak E, Yang D, Zhang G. The Cramer-Rao inequality for star bodies. Duke Math J, 2002, 112: 59-81 [20] Lutwak E, Yang D, Zhang G.  John ellipsoids. Proc London Math Soc, 2005, 90: 497-520 [21] Lutwak E, Yang D, Zhang G. A volume inequality for polar bodies. J Differential Geom, 2010, 84: 163-178 [22] Milman V, Pajor A. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed -dimensional space// Lindenstrauss J, Milman V. Geometric Aspects of Functional Analysis, Lecture Notes in Math 1376. Berlin: Springer, 1989: 64-104 [23] Pisier G. The Volume of Convex Bodies and Banach Space Geometry. Cambridge: Cambridge University Press, 1989 [24] Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 2014 [25] Zhu B, Zhou J, Xu W. Dual Orlicz-Brunn-Minkowski theory. Adv Math, 2014, 264: 700-725 [26] Zou D, Xiong G. Orlicz-John ellipsoids. Adv Math, 2014, 265: 132-168 [27] Zou D, Xiong G. Orlicz-Legendre ellipsoids. J Geom Anal, 2016, 26: 2474-2502 [28] Zou D, Xiong G. Convex bodies with identical John and LYZ ellipsoids. Int Math Res Not, 2018: 470-491 |