[1] Barchiesi M, Capriani G, Fusco N, Pisante G. Stability of Pólya-Szegö inequality for log-concave functions. J Funct Anal, 2014, 267: 2264-2297 [2] Besau F, Hack T, Pivovarov P, Schuster F. Spherical centroid bodies. Amer J Math, 2023, 145: 515-542 [3] Brock F, Solynin A. An approach to symmetrization via polarization. Trans Amer Math Soc, 2000, 352: 1759-1796 [4] Burchard A. Steiner symmetrization is continuous in    . Geom Funct Anal, 1997, 7: 823-860 [5] Capriani G M. The Steiner rearrangement in any codimension. Calc Var PDE, 2014, 49: 517-548 [6] Campi S, Gronchi P. The  -Busemann-Petty centroid inequality. Adv Math, 2002, 167: 128-141 [7] Chen F, Zhou J, Yang C. On the reverse Orlicz Busemann-Petty centroid inequality. Adv Appl Math, 2011, 47: 820-828 [8] Cianchi A, Fusco N. Steiner symmetric extremals in Pólya-Szegö type inequalities. Adv Math, 2006, 203: 673-728 [9] Cianchi A, Lutwak E, Yang D, Zhang G. Affine Moser-Trudinger and Morrey-Sobolev inequalities. Calc Var PDE, 2009, 36: 419-436 [10] Colesanti A, Fragalà I. The first variation of the total mass of log-concave functions and related inequalities. Adv Math, 2013, 244: 708-749 [11] Cordero-Erausquin D, Klartag B. Moment measure. J Funct Anal, 2015, 268: 3834-3866 [12] Gardner R, Hug D, Weil W. The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities. J Differ Geom, 2014, 97: 427-476 [13] Haberl C, Schuster F. Asymmetric affine  Sobolev inequalities. J Funct Anal, 2009, 257: 641-658 [14] Haberl C, Schuster F, Xiao J. An asymmetric affine Pólay-Szegö principle. Math Ann, 2012, 352: 517-542 [15] Haddad J, Jiménez C H, Montenegro M. Sharp affine Sobolev type inequalities via the  Busemann-Petty centroid inequality. J Funct Anal, 2016, 271: 454-473 [16] Haddad J, Jiménez C H, Silva L A. An  -Functional Busemann-Petty Centroid Inequality. Int Math Res Not, 2021, 10: 7947-7965 [17] Klartag B, Milman E. Centroid bodies and the logarithmic Laplace transform-a unified approach. J Funct Anal, 2012, 262: 10-34 [18] Leichtweiβ K. Affine Geometry of Convex Bodies. Heidelberg: Johann Ambrosius Barth, 1998 [19] Lin Y. Affine Orlicz Pólya-Szegö principle for log-concave functions. J Funct Anal, 2017, 273: 3295-3326 [20] Lutwak E. Centroid bodies and dual mixed volumes. Proc London Math Soc, 1990: 60: 365-391 [21] Lutwak E, Yang D, Zhang G.  affine isoperimetric inequalities. J Differ Geom, 2000, 56: 111-132 [22] Lutwak E, Yang D, Zhang G. Sharp affine  Sobolev inequalities. J Differ Geom, 2002, 62: 17-38 [23] Lutwak E, Yang D, Zhang G. Orlicz centroid bodies. J Differ Geom, 2010, 84: 365-387 [24] Lutwak E, Yang D, Zhang G. Orlicz projection bodies. Adv Math, 2010, 223: 220-242 [25] Lutwak E, Zhang G. Blaschke-Santaló inequalities. J Differ Geom, 1997, 45: 1-16 [26] Nguyen V. New approach to the affine Pólya-Szegö principle and the stability version of the affine Sobolev inequality. Adv Math, 2016, 302: 1080-1110 [27] Nguyen V. Orlicz-Lorentz centroid bodies. Adv Appl Math, 2018, 92: 99-121 [28] Paouris G, Werner E. Relative entropy of cone measures and  centroid bodies. Proc London Math Soc, 2012, 104: 253-286 [29] Paouris G, Pivovarov P. A probabilistic take on isoperimetric-type inequalities. Adv Math, 2012, 230: 1402-1422 [30] Petty C. Centroid surfaces. Pacific J Math, 1961, 11: 1535-1547 [31] Rotem L. Support functions and mean width for -concave functions. Adv Math, 2013, 243: 168-186 [32] Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 2014 [33] Volčcič A. Random Steiner symmetrizations of sets and functions. Calc Var PDE, 2013, 46: 555-569 [34] Werner E, Ye D. New  affine isoperimetric inequalities. Adv Math, 2008, 218: 762-780 [35] Wu D, Zhou J. The LYZ centroid conjecture for star bodies. Sci China Math, 2018, 61: 1273-1286 [36] Zhang G. Centroid bodies and dual mixed volumes. Trans Amer Math Soc, 1994, 345: 777-801 [37] Zhang G. The affine Sobolev inequality. J Differ Geom, 1999, 53: 183-202 [38] Zhu G. The Orlicz centroid inequality for star bodies. Adv Appl Math, 2012, 48: 432-445 |