[1] Abels H, Fei M. Sharp interface limit for a Navier-Stokes/Allen-Cahn system with different viscosities. arXiv:2201.09343v2 [2] Abels H, Garcke H, Grün G. Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math Models Methods Appl Sci, 2012, 22(3): 1150013 [3] Abels H, Liu Y. Sharp interface limit for a Stokes/Allen-Cahn system. Arch Ration Mech Anal, 2018, 229(1): 417-502 [4] Anderson D, Mcfadden G, Wheeler A. Diffuse-interface methods in fluid mechanics. Annu Rev Fluid Mech, 1998, 30: 139-165 [5] Blesgen T. A generalization of the Navier-Stokes equations to two-phase flows. J Phys D: Appl Phys, 1999, 32(10): 1119-1123 [6] Chen M, Guo X. Global large solutions for a coupled compressible Navier-Stokes/Allen-Cahn system with initial vacuum. Nonlinear Anal: Real World Appl, 2017, 37: 350-373 [7] Chen S, Wen H, Zhu C. Global existence of weak solution to compressible Navier-Stokes/Allen-Cahn system in three dimensions. J Math Anal Appl, 2019, 477(2): 1265-1295 [8] Chen S, Zhu C. Blow-up criterion and the global existence of strong/classical solutions to Navier-Stokes/Allen-Cahn system. Z Angew Math Phys, 2021, 72(1): 14-24 [9] Chen Y, He Q, Huang B, Shi X. Global strong solution to a thermodynamic compressible diffuse interface model with temperature-dependent heat conductivity in 1D. Math Methods Appl Sci, 2021, 44: 12945-12962 [10] Chen Y, He Q, Huang B, Shi X.The Cauchy problem for non-isentropic compressible Navier-Stokes/Allen-Cahn system with degenerate heat-conductivity. arXiv: 2005.11205 [11] Chen Y, He Q, Shi X, Wang X.Sharp interface limit for compressible non-isentropic phase-field model. arXiv: 2102.00705 [12] Chen Y, Hong H, Shi X. Stability of the phase separation state for compressible Navier-Stokes/Allen-Cahn system. Acta Mathematicae Applicatae Sinica, 2023, 40: 45-74 [13] Chen Y, Li H, Tang H. Optimal decay rate of the compressible Navier-Stokes/Allen-Cahn system in $\mathbb{R}^3$. J Differential Equations, 2022, 334: 157-193 [14] Ding S, Li Y, Luo W. Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D. J Math Fluid Mech, 2013, 15(2): 335-360 [15] Ding S, Li Y, Tang Y. Strong solutions to 1D compressible Navier-Stokes/Allen-Cahn system with free boundary. Math Methods Appl Sci, 2019, 42(14): 4780-4794 [16] Feireisl E, Petzeltová H, Rocca E, Schimperna G.Analysis of a phase-field model for two-phase compressible fluids. Math Models Methods Appl Sci, 20(7): 1129-1160 [17] Freistühler H. Phase transitions and traveling waves in compressible fluids. Arch Rational Mech Anal, 2014, 211: 189-204 [18] Hensel S, Liu Y. The sharp interface limit of a Navier-Stokes/Allen-Cahn system with constant mobility: Convergence rates by a relative energy approach. arXiv:2201.09423v2 [19] Huang F, Li M, Wang Y. Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2012, 44(3): 1742-1759 [20] Jiang S, Ni G, Sun W. Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids. SIAM J Math Anal, 2006, 38(2): 368-384 [21] Jiang S, Su X, Xie F. Remarks on sharp interface limit for an incompressible Navier-Stokes and Allen-Cahn coupled system. arXiv:2205.01301v1 [22] Kotschote M. Strong solutions of the Navier-Stokes equations for a compressible fluid of Allen-Cahn type. Arch Ration Mech Anal, 2012, 206(2): 489-514 [23] Kotschote M. Spectral analysis for travelling waves in compressible two-phase fluids of Navier-Stokes-Allen-Cahn type. J Evol Equ, 2017, 17(1): 359-385 [24] Liu T, Xin Z. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Commun Math Phys, 1988, 118(3): 451-465 [25] Lowengrub J, Truskinovsky L. Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc Royal Soc A: Math Phys Eng Sci, 1998, 454: 2617-2654 [26] Luo T, Yin H, Zhu C. Stability of the rarefaction wave for a coupled compressible Navier-Stokes/Allen-Cahn system. Math Methods Appl Sci, 2018, 41(12): 4724-4736 [27] Luo T, Yin H, Zhu C. Stability of the composite wave for compressible Navier-Stokes/Allen-Cahn system. Math Models Methods Appl Sci, 2020, 30(2): 343-385 [28] Matsumura A, Nishihara K. Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Jpn J Ind Appl Math, 1986, 3(1): 1-13 [29] Matsumura A, Nishihara K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Commun Math Phys, 1992, 144(2): 325-335 [30] Shi X, Yong Y, Zhang Y. Vanishing viscosity for non-isentropic gas dynamics with interacting shocks. Acta Math Sci, 2016, 36B(6): 1699-1720 [31] Wang X, Wang Y. The sharp interface limit of a phase field model for moving contact line problem. Methods and Applications of Analysis, 2010, 14(3): 285-292 [32] Witterstein G, Sharp interface limit of phase change flows. Adv Math Sci Appl, 2010, 20(2): 585-629 [33] Xin Z. Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases. Commun Pure Appl Math, 1993, 46(5): 621-665 [34] Xu X, Di Y, Yu H. Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines. J Fluid Mech, 2018, 849: 805-833 [35] Yan Y, Ding S, Li Y. Strong solutions for 1D compressible Navier-Stokes/Allen-Cahn system with phase variable dependent viscosity. J Differential Equations, 2022, 326: 1-48 [36] Yin H, Zhu C. Asymptotic stability of superposition of stationary solutions and rarefaction waves for 1D Navier-Stokes/Allen-Cahn system. J Differential Equations, 2019, 266(11): 7291-7326 [37] Zhao X. Global well-posedness and decay estimates for three-dimensional compressible Navier-Stokes-Allen-Cahn system. Proc Roy Soc Edinb A: Mathematics, 2022, 152(5): 1291-1322 |