[1] Ascher U M, Markowich P A, Pietra P, Schmeiser C. A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model. Math Models Methods Appl Sci, 1991, 1: 347-376 [2] Bae M, Chen G Q, Feldman M. Regularity of solutions to regular shock reflection for potential flow. Invent Math, 2009, 175: 505-543 [3] Bae M, Duan B, Xiao J J, Xie C J. Structural stability of supersonic solutions to the Euler-Poisson system. Arch Ration Mech Anal, 2021, 239: 679-731 [4] Bae M, Duan B, Xie C J. Subsonic solutions for steady Euler-Poisson system in two-dimensional nozzles. SIAM J Math Anal, 2014, 46: 3455-3480 [5] Bae M, Duan B, Xie C J. Subsonic flow for the multidimensional Euler-Poisson system. Arch Ration Mech Anal, 2016, 220: 155-191 [6] Bae M, Duan B, Xie C J. Two-dimensional subsonic flows with self-gravitation in bounded domain. Math Models Methods Appl Sci, 2015, 25: 2721-2747 [7] Bae M, Feldman M.Transonic shocks in multidimensional divergent nozzles. Arch Ration Mech Anal, 2011, 201: 777-840 [8] Chen G Q, Fang B X. Stability of transonic shocks in steady supersonic flow past multidimensional wedges. Adv Math, 2017, 314: 493-539 [9] Courant R, Friendrichs K O.Supersonic Flow and Shock Waves. New York: Interscience Publishers Inc, 1948 [10] Degond P, Markowich P A. A steady state potential flow model for semiconductors. Ann Mat Pura Appl, 1993, 165: 87-98 [11] Guo Y, Strauss W. Stability of semiconductor states with insulating and contact boundary conditions. Arch Ration Mech Anal, 2006, 179: 1-30 [12] Li J, Xin Z P, Yin H C. On transonic shocks in a nozzle with variable end pressures. Comm Math Phys, 2009, 291: 111-150 [13] Li T T, Yu W C.Boundary value problems for quasilinear hyperbolic systems. Duke Univeisity Mathematics Series V, Duke University, Mathematics Department, Durham, NC, 1985 [14] Liu T P. Nonlinear stability and instability of transonic flows through a nozzle. Comm Math Phys, 1982, 83: 243-260 [15] Liu T P. Transonic gas flow in a duct of varying area. Arch Rational Mech Anal, 1982, 80: 1-18 [16] Luo T, Ranch J, Xie C J, Xin Z P. Stability of transonic shock solutions for one-dimensional Euler-Poisson equations. Arch Ration Mech Anal, 2011, 202: 787-827 [17] Luo T, Xin Z P. Transonic shock solutions for a system of Euler-Poisson equations. Commun Math Sci, 2012, 10: 419-462 [18] Majda A. The existence of multidimensional shock fronts. Mem Amer Math Soc, 1983, 41: 1-95 [19] Métivier G.Stability of multidimensional shocks//Freistuhler H, Szepessy A. Advances in the Theory of Shock Waves. Boston: Birkhäuser, 2001: 25-103 [20] Rosini M D. A phase analysis of transonic solutions for the hydrodynamic semiconductor model. Quart Appl Math, 2005, 63: 251-268 [21] Rauch J. Qualitative behavior of dissipative wave equations on bounded domains. Arch Rational Mech Anal, 1976, 62: 77-85 [22] Rauch J, Taylor M. Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ Math J, 1974, 24: 79-86 [23] Weng S K. On steady subsonic flows for Euler-Poisson models. SIAM J Math Anal, 2014, 46: 757-779 [24] Xin Z P, Yan W, Yin H C. Transonic shock problem for the Euler system in a nozzle. Arch Ration Mech Anal, 2009, 194: 1-47 [25] Xin Z P, Yin H C. Transonic shock in a nozzle I: Two-dimensional case. Comm Pure Appl Math, 2005, 58: 999-1050 |