[1] Ball J M. Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J Nonl Sci, 1997, 7: 475-502 [2] Caraballo T, Mar\'{\i}n-Rubio P, Valero J. Autonomous and non-autonomous attractors for differential equations with delays. J Differential Equations, 2005, 208: 9-41 [3] Caraballo T, Lukaszewicz G, Real J. Pullback attractors for non-autonomous 2D Navier-Stokes equations in unbounded domains. C R Math Acad Sci Paris, 2006, 342: 263-268 [4] Carvalho A N, Langa J A, Robinson J C.Attractors for Infinite-dimensional Non-autonomous Dynamical Systems. New York: Springer, 2013 [5] Cui H, Langa J A, Li Y. Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness. Nonlinear Anal, 2016, 140: 208-235 [6] Chueshov I.Dynamics of Quasi-Stable Dissipative Systems. Berlin: Springer, 2015 [7] Cao C, Titi E S. Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann Math, 2007, 166: 245-267 [8] Gu A, Li D, Wang B, Yang H. Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^n$. J Differential Equations, 2018, 264: 7094-7137 [9] Guo B, Huang D. 3D stochastic primitive equations of the large-scale ocean: global well-posedness and attractors. Comm Math Phys, 2009, 286: 697-723 [10] Guo B, Huang D. Existence of the universal attractor for the 3D viscous primitive equations of large-scale moist atmosphere. J Differential Equations, 2011, 251: 457-491 [11] Hale J K, Raugel G. A damped hyperbolic equation on thin domains. Trans Amer Math Soc, 1992, 329: 185-219 [12] Kloeden P E, Langa J A. Flattening. squeezing and the existence of random attractors. Proc R Soc Lond Ser A Math Phys Eng Sci, 2007, 463: 163-181 [13] Kloeden P E, Real J, Sun C. Pullback attractors for a semilinear heat equation on time-varying domains. J Differential Equations, 2009, 246: 4702-4730 [14] Kloeden P E, Rasmussen M. Nonautonomous Dynamical Systems. Providence: Amer Math Soc, 2011 [15] Lions J L.Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires. Dunod Paris, 1969 [16] Li Y, She L, Wang R. Asymptotically autonomous dynamics for parabolic equations. J Math Anal Appl, 2018, 459: 1106-1123 [17] Li Y, Wang R, Yin J. Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels. Discrete Contin Dyn Syst Ser B, 2017, 22: 2569-2586 [18] Li Y, Gu A, Li J. Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations. J Differential Equations, 2015, 258: 504-534 [19] Li Y, Guo B. Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations. J Differential Equations, 2008, 245(7): 1775-1800 [20] Li Y, She L, Yin J. Equi-attraction and backward compactness of pullback attractors for point-dissipative Ginzburg-Landau equations. Acta Mathematica Scientia, 2018, 38B(2): 591-609 [21] Li Y, Guo B. Random attractors of Boussinesq equations with multiplicative noise. Acta Mathematica Sinica English Series, 2009, 25(3): 481-490 [22] Robinson J C.Infinite-dimensional Dynamical Systems: an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge: Cambridge University Press, 2001 [23] Temam R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer, 1997 [24] Rudin W. Functional Analysis.New York: McGraw-Hill, 1991 [25] Sun C, Yang L, Duan J. Asymptotic behavior for a semilinear second order evolution equation. Trans Amer Math Soc, 2011, 363: 6085-6109 [26] Sun C, Cao D, Duan J. Uniform attractors for nonautonomous wave equations with nonlinear damping. SIAM J Appl Dyn Syst, 2007, 6: 293-318 [27] Sun C, Wang S, Zhong C. Global attractors for a nonclassical diffusion equation. Acta Mathematica Sinica English Series, 2007, 23(7): 1271-1280 [28] Wang B. Weak pullback attractors for stochastic Navier-Stokes equations with nonlinear diffusion terms. Proc Amer Math Soc, 2019, 147: 1627-1638 [29] Wang B. Weak pullback attractors for mean random dynamical systems in bochner spaces. J Dynam Differ Equ, 2019, 31: 2177-2204 [30] Wang B. Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^{3}$. Tran Amer Math Soc, 2011, 363: 3639-3663 [31] Wang B. Well-posedness and long term behavior of supercritical wave equations driven by nonlinear colored noise on $\mathbb{R}^n$. J Funct Anal, 2022, 283(2): 109498 [32] Wang B. Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J Differential Equations, 2012, 253: 1544-1583 [33] Wang R, Guo B, Huang D.Necessary and sufficient criteria for existence, regularity and asymptotic stability of enhanced pullback attractors with applications to 3D primitive equations. Mathematical Models and Methods in Applied Sciences, 2023, DOI:10.1142/S0218202523500471 [34] Xu J, Caraballo T. Long time behavior of stochastic nonlocal partial differential equations and Wong-Zakai approximations. SIAM J Math Anal, 2022, 54: 2792-2844 [35] You B, Li F. Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics. Z Angew Math Phys, 2018, 69(5): Art 114 [36] Zhou G. Random attractor for the 3D viscous primitive equations driven by fractional noises. J Differential Equations, 2019, 266(11): 7569-7637 |