[1] Bildhauer M, Fuchs M, Müller J. Existence and regularity for stationary incompressible flows with dissipative potentials of linear growth. To appear in Journal of Mathematical Fluid Mechanics. Preprint:http://www.math.uni-sb.de/service/preprints/preprint398.pdf. [2] Bildhauer M, Fuchs M, Zhang G. Liouville-type theorems for steady flows of degenerate power law fluids in the plane. J Math Fluid Mech, 2013, 15(3):583-616 [3] Fuchs M. Liouville theorems for stationary flows of shear thickening fluids in the plane. J Math Fluid Mech, 2012, 14(3):421-444 [4] Fuchs M. Variations on Liouville's theorem in the setting of stationary flows of generalized Newtonian fluids in the plane//Proceedings of the St. Petersburg Mathematical Society, Vol XV. Advances in Mathematical Analysis of Partial Differential Equations. volume 232 of Amer Math Soc Transl Ser 2. Providence, RI:Amer Math Soc, 2014:79-98 [5] Fuchs M, Müller J, Tietz C. Signal recovery via TV-type energies. Algebra i Analiz, 2017, 29(4):159-195 [6] Fuchs M, Seregin G. Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Volume 1749 of Lecture Notes in Mathematics. Berlin:Springer-Verlag, 2000 [7] Fuchs M, Zhang G. Liouville theorems for entire local minimizers of energies defined on the class L log L and for entire solutions of the stationary Prandtl-Eyring fluid model. Calc Var Partial Differential Equations, 2012, 44(1/2):271-295 [8] Galdi G P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol I, Linearized Steady Problems. Volume 38 of Springer Tracts in Natural Philosophy. New York:Springer-Verlag, 1994 [9] Galdi G P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol Ⅱ, Nonlinear Steady Problems. Volume 39 of Springer Tracts in Natural Philosophy. New York:Springer-Verlag, 1994 [10] Gilbarg D, Weinberger H F. Asymptotic properties of steady plane solutions of the Navier-Stokes equations with bounded Dirichlet integral. Ann Scuola Norm Sup Pisa Cl Sci, (4), 1978, 5(2):381-404 [11] Hohenemser K, Prager W. Über die Ansätze der Mechanik isotroper Kontinua. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik und Mechanik, 1932, 12(4):216-226 [12] Ja Jin B, Kang K. Liouville theorem for the steady-state non-newtonian Navier-Stokes equations in two dimensions. J Math Fluid Mech, 2014, 16(2):275-292 [13] Koch G, Nadirashvili N, Seregin G, Sverák V. Liouville theorems for the Navier-Stokes equations and applications. Acta Math, 2009, 203(1):83-105 [14] Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. Second English Edition, Revised and Enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Math Appl, Vol 2. Gordon and Breach, New York, London, Paris:Science Publishers, 1969 [15] Málek J, Nečas J, Rokyta M, Růžička M. Weak and Measure-Valued Solutions to Evolutionary PDEs. Volume 13 of Applied Mathematics and Mathematical Computation. London:Chapman & Hall, 1996 [16] Prager W. Einführung in die Kontinuumsmechanik. Lehr-und Handbücher der Ingenieurwissenschaften, Bd. 20. Basel, Stuttgart:Birkhäuser Verlag, 1961 [17] Suquet P-M. Sur une nouveau cadre fonctionnel pour les équations de la plasticité. C R Acad Sc Paris (A), 1978, 286:1129-1132 [18] Suquet P-M. Un espace fonctionnel pour les équations de la plasticité. Ann Fac Sci Toulouse Math, (5), 1979, 1(1):77-87 [19] Temam R, Strang G. Functions of bounded deformation. Arch Rational Mech Anal, 1980/81, 75(1):7-21 [20] von Mises R. Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913:582-592 [21] Zhang G. A note on Liouville theorem for stationary flows of shear thickening fluids in the plane. J Math Fluid Mech, 2013, 15(4):771-782 [22] Zhang G. Liouville theorems for stationary flows of shear thickening fluids in 2D. Ann Acad Sci Fenn Math, 2015, 40(2):889-905 |