[1] Calderón A P. Commutators of singular integral operators. Proc Natl Acad Sci USA,1965, 53: 1092-1099 [2] Pérez C. Endpoint estimates for commutators of singular integral operators. J Funct Anal,1995, 128(1): 163-185 [3] Yabuta K. Generalization of Calderón-Zygmund operators. Studia Math,1985, 82(1): 17-31 [4] Stein E M.Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993 [5] García-Cuerva J, De Francia J L. Weighted Norm Inequalities and Related Topics. Amsterdam: North Holland, 1985 [6] Journé J L. Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Berlin: Springer, 1983 [7] Bramanti M, Cerutti M C. Commutators of singular integrals on homogeneous spaces. Bollettino della Unione Matematica Italiana-B, 1996, 10(4): 843-884 [8] Macías R, Segovia C. Lipschitz functions on spaces of homogeneous type. Adv Math,1979, 33(3): 257-270 [9] Dao N A, Krantz S G. Lorentz boundedness and compactness characterization of integral commutators on spaces of homogeneous type. Nonlinear Anal, 2021, 203: 112162 [10] Stempak K, Tao X X. Local Morrey and Campanato spaces on quasimetric measure spaces. J Funct Spaces, 2014, Art: 172486 [11] Duoandikoetxea J. Fourier Analysis.Providence, RI: Amer Math Soc, 2001 [12] Coifman R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann of Math, 1976, 103: 611-635 [13] Uchiyama A. On the compactness of operators of Hankel type. Tohoku Math J, 1978, 30(1): 163-171 [14] Janson S. Mean oscillation and commutators of singular integral operators. Ark Mat, 1978, 16(2): 263-270 [15] Krantz S, Li S Y. Boundedness and compactness of integral operators on spaces of homogeneous type and applications, II. J Math Anal Appl, 2001, 258(2): 642-657 [16] Grafakos L. Classical Fourier Analysis. New York: Springer, 2014 [17] John F, Nirenberg L. On functions of bounded mean oscillation. Comm Pure Appl Math, 1961, 14: 415-426 [18] Quek T S, Yang D C. Calderón-Zgymund-type operators on weighted weak Hardy spaces over $R^n$. Acta Math Sin,2000, 16(1): 141-160 [19] Cwikel M. The dual of weak $L^p$. Ann Inst Fourier (Grenoble), 1975, 25(2): 81-126 [20] Torchinsky A.Real-Variable Methods in Harmonic Analysis. San Diego: Academic Press, 1986 [21] Brudnyi Y. Compactness criteria for spaces of measurable functions. St Petersburg Math J, 2015, 26(1): 49-68 [22] Clop A, Cruz V. Weighted estimates for Beltrami equations. Ann Acad Sci Fenn Math, 2013, 38(1): 91-113 |