[1] Cwikel M, Sagher Y. (L(p,1)). Indiana Univ Math J, 1972, 21: 781–786
[2] Cwikel M. On the congugates of some function spaces. Studia Math, 1973, 45: 49–55
[3] Cwikel M. The dual of weak Lp. Ann Inst Fourier, 1975, 25: 81–126
[4] Dodds P G, Dodds T K, de Pagter B. Noncommutative K¨othe duality. Trans Amer Math Soc, 1993, 339: 717–750
[5] Dykema K J, Kalton N J. Sums of commutators in ideals and modules of type II factors. Ann Inst Fourier, 2005, 55: 931–971
[6] Fack T, Kosaki H. Generalized s-numbers of -measurable operators. Pac J Math, 1986, 123: 269–300
[7] Guido D, Isola T. Singular traces on semifinite von Neumann algebras. J Funct Anal, 1995, 134: 451–485
[8] Grafakos L. Classical and Modern Fourier Analysis. London: Pearson Education, 2004
[9] Hunt R A. On L(p, q) spaces. L’Enseignement Math, 1966, 12: 249–276
[10] Kosaki H. Non-commutative Lorentz spaces associated with a semi-finite von Neumann algebra and applications. Proc Japan Acad Ser A, 1981, 57: 303–306
[11] Nelson E. Notes on non-commutative integration. J Funct Anal, 1974, 15: 103–116
[12] Pisier G, Xu Q. Noncommutative Lp-spaces//Handbook of the Geometry of Banach Spaces, Vol 2. Amsterdam: North-Holland, 2003: 1459–1517
[13] Randrianantoanina N. Embeddings of non-commutative Lp-spaces into preduals of finite von Neumann algebras. Israel J Math, 2008, 163: 1–27
[14] Stein EM,Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton University Press, 1971
[15] Terp M. Lp Spaces Associated with von Neumann Algebras. Notes, Copenhagen Univ, 1981
[16] Xu Q. Noncommutative Lp-spaces. Preprint
[17] Xu Q. Interpolation of operator spaces. J Funct Anal, 1996, 139: 500–539
[18] Bekjan N. On Lp-matricially normed spaces. Acta Math Sci, 2005, 25B(4): 681–686 |