[1] Auscher P, On Lp estimates for square roots of second order elliptic operators on $\mathbb{R}$n. Put Mat, 2004, 48:159-166 [2] Auscher P. On necessary and sufficient conditions for Lp-estimates of Riesz transforms associated to elliptic operators on $\mathbb{R}$n and related estimates. Memoirs of the Amer Math Soc, 2007, 186 [3] Alvarez J, Bagby R, Kurtz D, Pérez C, Weighted estimates for commutators of linear operators. Studia Math, 1993, 104:195-209 [4] Auscher P, Coulhon T, Duong X T, Hofmann S, Riesz transforms on manifolds and heat kernel regularity. Ann Sci École Norm Sup, 2004, 37:911-957 [5] Auscher P, Hofmann S, Lacey M, McIntosh A, Tchamitchian P, The solution of the Kato square root problem for second order elliptic operators on $\mathbb{R}$n. Ann of Math, 2002, 156:633-654 [6] Auscher P, Hofmann S, Lewis J, Tchamitchian P, Extrapolation of Carleson measures and the analyticity of Kato's square root operators. Acta Math, 2001, 187:161-190 [7] Auscher P, Hofmann S, McIntosh A, Tchamitchian P, The Kato square root problem for higher order elliptic operators and systems on $\mathbb{R}$n. J Evol Equ, 2001, 1:361-385 [8] Auscher P, Martell J M. Weighted norm inequalities, off-diagonal estimates and elliptic operators, Part I:General operator theory and weights. Adv Math, 2006, 212:225-276 [9] Auscher P, Martell J M. Weighted norm inequalities, off-diagonal estimates and elliptic operators, Part II:Off-diagonal estimates on spaces of homogeneous type. J Evol Equ, 2007, 7:265-316 [10] Auscher P, Martell J M. Weighted norm inequalities, off-diagonal estimates and elliptic operators, Part III:Harmonic analysis of elliptic operators. J Funct Anal, 2006, 241:703-746 [11] Bramanti M, Cerutti M. Commutators of singular integrals on homogeneous spaces. Boll Un Mat Ital, B(7), 1996, 10:843-883 [12] Blunck S, Kunstmann P, Calderón-Zygmund theory for non-integral operators and the H∞-functional calculus. Rev Mat Iberoamericana, 2003, 19:919-942 [13] Calderón A P, Commutators of singular integral operators. Proc Nat Acad Sci USA, 1965, 53:1092-1099 [14] Calderón A P. Algebras of singular integral operators. Proc Sympos Pure Math, 10 AMS, Providence, RI, 1967:18-55 [15] Calderón A P. Commutators, singular integrals on Lipschitz curves and application. Proc Inter Con Math Helsinki, 1978:86-95 [16] Cohen J, A sharp estimate for a multilinear singular integral in $\mathbb{R}$n. Indiana Univ Math J, 1981, 30:693-702 [17] Chen Y, Ding Y, Hofmann S, The Commutator of the Kato Square Root for Second Order Elliptic Operators on $\mathbb{R}$n. Acta Mathematica Sinica(English Series), 2016, 32:1121-1144 [18] Coifman R, Deng D, Meyer Y, Domaine de la racine carrée de certains opérateurs différentiels accrétifs. Ann Institut Fourier(Grenoble), 1983, 33:123-134 [19] Chiarenza F, Frasca M, Longo P, Interior W2, p estimates for nondivergence elliptic equations with discontinuous coefficiens. Ric Math, 1991, 40:149-168 [20] Chiarenza F, Frasca M, Longo P, W2, p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans Amer Math Soc, 1993, 334:841-853 [21] Carbery A, Hofmann S, Wright J, The Calderón commutator along a parabola. Math Proc Camb Phil Soc, 1999, 126:752-769 [22] Coifman R, Meyer Y, On commutators of singular integrals and bilinear integrals. Trans Amer Math Soc, 1975, 212:315-331 [23] Coifman R, McIntosh A, Meyer Y, L'intégrale de Cauchy définit un opérateur borné sur L2($\mathbb{R}$) pour les courbes lipschitziennes. Ann of Math, 1982, 116:361-387 [24] Coifman R, Rochberg R, Weiss G, Factorization theorems for Hardy spaces in several variables. Ann of Math, 1976, 103:611-635 [25] Duoandikoetxea J. Fourier Analysis. Grad Stud Math, 2001, 29 [26] David G, Journóe J-L, A boundedness criterion for generalized Calderón-Zygmund operators. Ann of Math, 1984, 120:371-397 [27] Fabes E, Jerison D, Kenig C, Multilinear square functions and partial differential equations. Amer J Math, 1985, 107:1325-1368 [28] Di Fazio G, Ragusa M A, Interior estimates in morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J of Funct Anal, 1993, 112:241-256 [29] Grafakos L. Classical and Modern Fourier Analysis. New Jersey:Pearson Education, 2004 [30] García-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics//North Holland Math Stud 116. Amsterdam:North Holland, 1985 [31] Hofmann S, Weighted inequalities for commutators of rough singular integrals. Indiana University Mathematics Journal, 1990, 39:1275-1304 [32] Hofmann S, On certain non-standard Calderón-Zygmund operators. Studia Math, 1994, 109:105-131 [33] Hofmann S, Lacey M, McIntosh A, The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds. Ann of Math, 2002, 156:623-631 [34] Hofmann S, Martell J M, Lp bounds for Riesz transforms and square roots associated to second order elliptic operators. Publ Mat, 2003, 47:497-515 [35] Hofmann S, McIntosh A, The solution of the Kato problem in two dimensions. Proceedings of the Conference on Harmonic Analysis and PDE held in El Escorial, Spain in July 2000, Publ Mat Vol extra, 2002, 47:143-160 [36] Johnson R, Neugebauer C J, Change of variable results for Ap and reverse Hölder RHr-class. Trans Amer Math Soc, 1991, 328:639-666 [37] Kato T, Fractional powers of dissipative operator. J Math Soc Japan, 1961, 13:246-274 [38] McIntosh A. On representing closed accretive sesquilinear forms as (A1/2u, A*1/2v). Brezis H, Lions J -L. College de France Seminar. Vol III. Res Notes in Math 70. Pitman, Boston, Mass, 1982:252-267 [39] McIntosh A. Square root of operators and applications to hyperbolic PDEs. Proc Centre Math Anal Austral Natl Univ 5. Canberra:Austral Natl Univ, 1984:124-136 [40] Stein E M. Harmonic Analysis:Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Univ Press, 1993 |