[1] Aw A, Rascle M.Resurrection of “second order” models of traffic flow. SIAM J Appl Math, 2000, 60: 916-938 [2] Zhang H.A non-equilibrium traffic model devoid of gas-like behavior. Transportation Res Part B, 2002, 36: 275-290 [3] Jiang W, Wang Z.Developing an Aw-Rascle model of traffic flow. J Eng Math, 2016, 97: 135-146 [4] Chaplygin S A.On gas jets. Sci Mem Moscow Univ Math Phys, 1904, 21: 1-121 [5] Serre D.Multidimensional shock interaction for a Chaplygin gas. Arch Rational Mech Anal, 2009, 191: 539-577 [6] Li T.Nonlinear dynamics of traffic jams. Second International Multi-Symposiums on Computer and Com- putational Sciences: IMSCCS, 2007, 2007: 550-555. doi: 10.1109/IMSCCS.2007.60 [7] Brenier Y.Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations. J Math Fluid Mech, 2005, 7: 326-331 [8] Wang Z, Zhang Q.The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations. Acta Math Sci, 2012, 32B(3): 825-841 [9] Qu A, Wang Z.Stability of the Riemann solutions for a Chaplygin gas. J Math Anal Appl, 2014, 409(1): 347-361 [10] Chen T, Qu A, Wang Z.Existence and uniqueness of the global L1 solution of the Euler equations for Chaplygin gas. Acta Math Sci, 2021, 41B: 941-958 [11] Lu X, Xu M, ChenW, et al. Adaptive-AR model with drivers’ prediction for traffic simulation. International Journal of Computer Games Technology, 2013, 8 pages [12] Garavello M, Piccoli B.Traffic flow on a road network using the Aw-Rascle model. Commun Partial Differ Equ, 2006, 31: 243-275 [13] Greenberg J M.Extensions and amplifications of a traffic model of Aw and Rascle. SIAM J Appl Math, 2001, 62: 729-745 [14] Herty M, Rascle M.Coupling conditions for a class of second-order models for traffic flow. SIAM J Math Appl, 2006, 38: 595-616 [15] Klar A, Greenberg J M, Rascle M.Congestion on multilane highways. SIAM J Appl Math, 2003, 63: 818-833 [16] Moutari S, Rascle M.A hybrid Lagrangian model based on the Aw-Rascle traffic flow model. SIAM J Appl Math, 2007, 68: 413-436 [17] Li T.Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow. J Differential Equations, 2003, 190: 131-149 [18] Li T.Nonlinear dynamics of traffic jams. Physica D, 2005, 207: 41-51 [19] Lebacque J, Mammar S, Salem H.The Aw-Rascle and Zhang’s model:Vacuum problems, existence and regularity of the solutions of the Riemann problem. Transportation Res Part B, 2007, 41: 710-721 [20] Berthelin F, Degond P, Delitala M, et al.A model for the formation and evolution of traffic jams. Arch Rational Mech Anal, 2008, 187: 185-220 [21] Shen C, Sun M.Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Aw-Rascle model. J Differential Equations, 2010, 249: 3024-3051 [22] Sun M.Interactions of elementary waves for the Aw-Rascle model. SIAM J Appl Math, 2009, 69(6): 1542-1558 [23] Lu Y.Existence of global bounded weak solutions to nonsymmetric systems of Keyfitz-Kranzer type. J Funct Anal, 2011, 261: 2797-2815 [24] Shao Z, Huang M.Interactions of delta shock waves for the Aw-Rascle traffic model with split delta functions. J Appl Anal Comput, 2017, 7: 119-133 [25] Chen T, Jiang W, Li T.On the stability of the improved Aw-Rascle-Zhang model with Chaplygin pressure. Nonlinear Anal RWA, 2021, 62: 103351 [26] Wang G.The Riemann problem for Aw-Rascle traffic flow with negative pressure. Chin Ann Math Ser A, 2014, 35: 73-82 [27] Latora V, Baranger M, Rapisarda A, et al.The rate of entropy increase at the edge of chaos. Physics Letters A, 2000, 273(1/2): 97-103 [28] Jiang W, Wang Z.The comparison of the Riemann solutions in gas dynamics. J Math Anal Appl, 2015, 428(2): 1252-1264 [29] Song Y, Guo L.General limiting behavior of Riemann solutions to the non-isentropic Euler equations for modified Chaplygin gas. J Math Phys, 2020, 61(4): 1-18 [30] Tong M, Shen C, Lin X.The asymptotic limits of Riemann solutions for the isentropic extended Chaplygin gas dynamic system with the vanishing pressure. Bound Value Probl, 2018, 144: 1-20 [31] Pang Y.Delta shock wave in the compressible Euler equations for a Chaplygin gas. J Math Anal Appl, 2017, 448: 245-261 [32] Pang Y, Hu M.The non-self-similar Riemann solutions to a compressible fluid described by the generalized Chaplygin gas. Internat [J] Non-Linear Mech, 2018, 107: 56-63 [33] Pang Y.Delta shock wave with Dirac delta function in multiple components for the system of generalized Chaplygin gas dynamics. Bound Value Probl, 2016, 1: 1-20 [34] Ding Q, Guo L. The Vanishing Pressure Limit of Riemann Solutions to the Non-Isentropic Euler Equations for Generalized Chaplygin Gas. Adv Math Phys, 2019, 12 pages [35] Pan L, Han X.The Aw-Rascle traffic model with Chaplygin pressure. J Math Anal Appl, 2013, 401: 379-387 [36] Wang Y, Chen Y, Lai J. Fuzzy prediction for traffic flow based on delta test. Math Probl Eng, 2016, 13 pages [37] Yang H, Sun W.The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws. Nonlinear Anal, 2007, 67(11): 3041-3049 [38] Guo L, Li T, Pan L, et al.The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations with a source term. Nonlinear Anal RWA, 2018, 41: 588-606 [39] Shao Z.The Riemann problem with delta initial data for the Aw-Rascle traffic model with Chaplygin pressure. Acta Math Sci, 2014, 34A(6): 1353-1371 [40] Chen Y, Chen T, Wang Z.The existence of the measure solution for the non-isentropic Chaplygin gas. Acta Math Sci, 2020, 40A(4): 833-841 [41] Li H, Shao Z.Vanishing pressure limit of Riemann solutions to the Aw-Rascle model for generalized Chaplygin gas. Acta Math Sci, 2017, 37A(5): 917-930 [42] Smoller J.Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1994 [43] Sheng W, Zhang T.The Riemann problem for the transportation equations in gas dynamics. Mem Amer Math Soc, 1999, 137 [44] Qu A, Yuan H.Measure solutions of one-dimensional piston problem for compressible Euler equations of Chaplygin gas. J Math Anal Appl, 2020, 481: 123486 |